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ABSTRACT  

 

Tactic-Based Learning for Collective Learning Systems 

 

Tactic-Based Learning is a new selection policy for statistical learning systems that 

has been tested with a Collective Learning Automaton which solves a simple, but 

representative problem. Current selection policies respond to immature stimuli that do not 

yet have high-confidence responses associated with them by selecting responses 

randomly. Albeit unbiased, this policy ignores any confident information already 

acquired for other well-trained stimuli. To exploit this confident information, Tactic-

Based Learning hypothesizes that in the absence of a sufficiently confident response to a 

given stimulus, selecting a confident response to a different, but nonetheless well-trained 

stimulus is a better strategy than selecting a random response. Tactic-Based Learning 

does not require any feature comparison in search of an appropriate response. Preliminary 

results show that Tactic-Based Learning significantly accelerates learning and reduces 

error, especially when several stimuli share the same response, i.e., when broad domain 

generalization is possible. Tactic-Based Learning reduces the use of pseudo-random 

number generators in the response selection process. Additionally, Tactic-Based Learning 

assists the recovery of learning performance when the problem evolves over time.  
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EXECUTIVE SUMMARY 
 

 

 

 

 

 

In Collective Learning Systems (CLS), a Collective Learning Automaton (CLA) 

learns the appropriate response for each stimulus by selecting responses until one of them 

emerges as statistically optimal, guided by feedback from an evaluating Environment 

(Bock 1976). Generally, CLS theory ignores what has already been learned by other 

stimuli when making decisions about a new stimulus. Many psychologists agree that 

applying successful solutions for old problems to new and often unrelated problems is a 

useful learning strategy (Piaget 1936, Pulaski 1980, Berk 2003). Although this research 

does not attempt to replicate human behavior at any level, biologically and 

psychologically inspired mechanisms and methods can often provide useful insights and 

hints for machine learning methods (Heckman 2004). 

This research deals with a selection policy for CLAs, called Tactic-Based Learning 

(TBL), which accelerates learning by applying knowledge about one well-learned 

situation to another. Although many machine learning algorithms can achieve excellent 

results by identifying similar feature vectors (explicit domain generalization), they all 

require postulating a sensible and computable distance metric. For example, the k-

Nearest Neighbor algorithm (Mitchell 1997, Moore & Lee 1994) computes similarity 

using the Euclidean distance between vectors in an ordered n-dimensional space. On the 
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other hand, although case-based reasoning (Sycara et al. 1992) allows feature vectors to 

be categorical, a distance metric of some kind must be postulated to identify similar 

cases.  

For many problem domains, it is not possible to postulate a meaningful distance 

metric. For example, in Natural Language Processing there is no direct way to compute 

the distance between the meanings of words, so other methods must be devised (Portnoy 

& Bock 2005). TBL, however, does not compare feature vectors at all, and is thus 

applicable to a wide problem domain. 

A CLA learns how to respond to stimuli appropriately using the algedonic cycle 

(Beer 1966), as illustrated in Figure 1. The CLA is embedded in an Environment that 

sends a stream of stimuli to the CLA and periodically issues evaluations of the CLA’s 

responses to these stimuli. A stimulus is a vector of several features that describes some 

state of the Environment. The CLA uses a State Transition Matrix (STM) to store each 

unique stimulus that has been received, along with its occurrence count (sample size) and 

an estimate of the probability that each possible response is valid for this stimulus.  For 

each stimulus that is received, the CLA uses these probabilities to select a response, 

which is then sent to the Environment. These selection probabilities are updated based on 

periodic evaluations issued to the CLA by the Environment at the end of a stage, which is 

a sequence of responses by the CLA.  
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For a given stimulus, the Standard CLA (a CLA that does not use TBL) selects the 

response with the highest statistical confidence if the confidence is sufficiently high; 

otherwise, a response is selected at random. All responses are sent to the Environment, 

and at the end of each stage, the Environment evaluates their collective performance. 

This evaluation is issued to the CLA, where the compensation function converts the 

evaluation into an update. The update is applied to all the elements of the probability 

vectors in the STM that were used to generate the CLA’s responses since the last 

evaluation (the history of the stage) (Bock 1993).   

The standard difference of two proportions is used to compute the statistical 

confidence of each response for every stimulus, which is called the selection confidence 

of a response.   

Figure 1: A complete Collective Learning System (CLS). The learning agent, the CLA, engages in 

the algedonic cycle to acquire knowledge about the environment, eventually eliciting correct 

responses to its stimuli. 
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Tactic-Based Learning is an algorithm that overrides the Standard selection policy 

used by a Standard-CLA. A TBL-CLA follows the Standard selection policy until one 

stimulus is sufficiently well trained to elect its primary response as a tactic. A stimulus 

supports a tactic when its selection confidence is very high. Stimuli that are using a tactic 

(follower stimuli) simply use this response, assuming it is better than a random response. 

However, each follower stimulus tracks the effectiveness of the tactic and uses it only as 

long as it remains effective (an average compensation ≥ 1). When a new tactic becomes 

available, all stimuli that do not yet have an effective tactic will try it.  

The lifecycle of a hypothetical stimulus in a Tactic-Based CLA is described in Figure 

2.  When there are no tactics in a CLA, all stimuli follow the Standard selection policy 

and are called seekers. As soon as the first tactic appears, all seekers will investigate it. 

When a stimulus selects a tactic, it becomes a follower of that tactic. As long as a tactic 

remains effective for a follower, the follower will continue to use the tactic’s response. If 

a tactic proves ineffective (a parameter of the algorithm), the follower drops this tactic 

and looks for another. If no other effective tactics are available, the stimulus reverts to the 

Standard selection policy and becomes a seeker. After a follower has attained a specified 

selection confidence, it becomes an independent stimulus and reverts to the Standard 

selection policy. Dropping the tactic allows the independent stimulus to explore its 

response range. Exploration is useful because it helps avoid settling into a local 

maximum of the reward function for the CLA. An independent stimulus will either lose 

confidence in its response and revert to being a follower, or will become confident 

enough to become a supporter of a tactic itself. An independent stimulus is allowed some 

latitude, and it will only revert to being a follower if its selection confidence falls below 

the dependence threshold.  
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In the event that a supporter loses confidence in its response, the supporter withdraws 

its support from the tactic it was supporting and reverts to being independent. If the tactic 

no longer has any supporters, it will no longer be available for use, and any follower 

stimulants of it will become seekers.  

Figure 2: The Life Cycle of a Stimulus, φφφφ.  (1) The stimulus, φ, is encountered for the first time. φ is a seeker. (2) The 

first tactic appears and φ becomes a follower of it. (3) The first tactic is not effective, so φ abandons it and returns to 

being a seeker. (4) A second tactic appears and φ becomes a follower of this new tactic. (5) the stimulus’ selection 

confidence reaches the independence threshold. φ becomes independent. (6) φ does not become confident in a 

respondent andφ’s selection confidence drops below the dependence threshold. φ to becomes follower again of its 

most effective tactic. (7) φ recovers its selection confidence and becomes an independent again. (8) φ has become 

confident enough to become a supporter of its own confident response. If this response is not already a tactic, a new 

tactic is available to other stimuli. (9) φ loses confidence and withdraws its support from its confident response. If φ 

was the only supporter of that tactic, the tactic is no longer available to other stimuli. (10) Once again, φ supports its 

confident response.  
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There were three factors in these experiments: (1) the TBL thresholds that govern 

when a stimulus can use or support a tactic (2) the environmental conditions and (3) the 

collection length (the number of responses that a CLA makes between evaluations).  

The TBL thresholds (support, withdrawal, independence, and dependence) were 

varied incrementally from 50% to 99.99% under the following restrictions: 

• Independence threshold ≤ Support threshold 

• Dependence threshold ≤ Independence threshold 

• Withdrawal threshold ≤ Support threshold 

The environmental conditions were varied to consider classification tasks with single 

and multiple correct classifications of stimuli. Experiments were also conducted in 

stationary environments and a special case of a non-stationary environment, called a task-

switching environment. In a task-switching environment, at some point in the match after 

the initial contest, the environment suddenly changes the correct solution to the game  

(partially or completely), and the CLA must abandon its obsolete solution and learn a 

new solution.  

The collection length was varied incrementally between 1 and 12. A collection length 

of 1 is trivial because the problem becomes a simple process of elimination. A collection 

length of 12 is considerably more difficult. As the collection length gets longer, it 

becomes harder to tell which stimuli chose correct responses and which did not.  
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Original and Significant Contributions 

This research makes the following original and significant contributions: 

 

• Tactic-Based Learning is a method for improving learning performance on 

categorical reinforcement learning tasks by leveraging existing knowledge that 

does not require any feature analysis of the domain or the range.  

 

• Tactic-Based Learning significantly reduces the learning agent’s reliance on a 

pseudo-random number generator for breaking ties when making selections. 

 

• At optimal settings, a CLA which has implemented Tactic-Based Learning always 

performs better on learning tasks than a CLA which has implemented the 

Standard selection policy without any significant increase in training time under 

the environmental conditions examined in this research.
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CHAPTER 1: INTRODUCTION 
 

 

 

 

 

1.1 Motivation  

“When all you have is a hammer, everything looks like a nail”. Although this popular 

saying sounds a bit pessimistic, it expresses a general quality of human cognition: we 

take what we already know and try to apply that knowledge or skill to new situations in 

life. We know full well that the solution may succeed or fail, but we regard it as a better 

idea to use what we know than simply to act in a random fashion.  

In adults, this behavior is often quite subtle. Consider the person who was invited to 

go boating with some friends and was offered the chance to pilot the boat for a few 

minutes, being assured that it was “just like driving a car”. A little skeptical, the person 

got behind the wheel, started the motor, engaged the throttle, and found that almost 

everything about the experience was different than driving a car. The boat simply did not 

respond to the controls in the same way as a car. The person quickly adapted and 

managed to pilot across the lake without putting anyone in excessive danger (although, 

admittedly, everyone was very glad when an experienced pilot took the helm again).  

This story deals with adult behavior, but the ability to learn about new situations by 

applying known solutions to other problems is one of the cornerstones of infant learning. 
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Consider a twelve-month old who has just discovered the joys of voluntarily dropping 

things. Toys are grasped and released in her crib. Pacifiers are dropped from her stroller. 

Food is dropped from her high chair. Some objects she can reach again and drop again, 

others fall out of her reach. Parents may return some items, but other times items, like 

food or dirty pacifiers, are not returned.  

Through experimentation, the young child learns about dropping objects and about 

the objects that are dropped. Some things bounce when dropped, some things are too 

heavy to be lifted, dropping certain things makes mom angry, and other things are fun to 

drop but are missed once they have disappeared or are out of reach. Dropping soon 

progresses on to throwing and, once again, the lessons learned about dropping (and 

perhaps other actions which may seem unrelated) clearly help to sharpen the new skill 

(Berk 2003).   

This research presents a new method for machine learning that allows a learning 

agent to use information it has acquired about one situation to other, possibly unrelated, 

situations. The method is based on an understanding of human learning and development. 

Before going any further, it should be said that the mechanisms for machine learning 

developed in this research do not replicate human learning mechanisms, nor do the 

conclusions of the research claim to make formal any statements about human learning 

based on the machine learning mechanisms.  

It seems to make sense to look at what is known about human learning when 

considering new mechanisms for machine learning. The field of psychology can often 

help light the way in the search for new approaches to machine learning. Jean Piaget’s 

study of newborns has influenced psychological research for the past fifty years. 

Although some of the finer points of his theory have been challenged, his description of 
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the way a newborn acquires knowledge is still considered a reasonable framework.  

One of Piaget’s fundamental ideas was that of schemes, a generalized term for 

organized knowledge about the world. Schemes are used and modified as the newborn 

learns about her environment. A newborn’s first scheme arises out of her reflexes, but 

once the first scheme is acquired she will apply it to everything she comes in contact 

with. This first scheme becomes her first tool for exploring her world.  

Piaget’s idea of schemes is used in this research as a starting point for the 

development of a new strategy for reinforcement learning. For this reason, the relevant 

background and theories that Piaget used to explain the psychological basis of learning in 

human infants are presented in Section 2.1.1. 

The idea of using one solution for two problems may also be considered from a 

mathematical perspective. If the goal of an adaptive learning agent is to learn the 

appropriate transform that maps x inputs into y outputs and x>y, then by the pigeonhole 

principle, there must be some inputs which share the same output (Ross and Wright 1988, 

p207). In other words, the outputs are not mutually exclusive.  

Classifiers that use Bayesian posterior probabilities to select the output must accept 

the lack of mutual exclusivity as “a cost of doing business”. A Bayes Optimal classifier 

gives the minimum possible error, but only for supervised learning agents (Mitchell 

1997). Online learning agents do not have a labeled set of training data from which to 

learn; therefore, the mistakes the learning agent makes in the learning process are 

included in its knowledge base and they are not estimating the class conditional 

probabilities. Maximum Likelihood classifiers are not interested in class conditional 

probabilities and are more appropriate for an online learning agent, but a Maximum 

Likelihood classifier does not acknowledge or take advantage of any dependence 
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between classes. Perhaps there is a classification strategy that actually exploits any 

overlap among the classes to improve learning. If a reinforcement learning agent were to 

apply a solution it had learned in one context to other contexts about which it was still 

unsure, perhaps this could improve learning by biasing the system towards proven 

solutions, especially if the solutions from one context to the next shared something in 

common, albeit some not-at-all-obvious quality.  

In current state-of-the-art adaptive learning systems, responses are selected randomly 

before the learning agent has identified a clear relationship between a given stimulus and 

a given response. Random selection insures that the response range is fully explored and 

minimizes bias in the system. Although this is an effective and reasonable strategy for a 

learning agent that knows nothing, once a learning agent has discovered some 

relationships in its environment, it seems reasonable that these relationships should be 

used to tackle new situations.   

In their thorough overview of reinforcement learning, Kaelbling et al. (1996) close 

with the following remark:  
There are a variety of reinforcement learning techniques that work 
effectively on a variety of small problems. But very few of these 
techniques scale well to larger problems. This is not because researchers 
have done a bad job of inventing learning techniques, but because it is 
very difficult to solve arbitrary problems in the general case. In order to 
solve highly complex problems, we must give up tabula rasa learning 
techniques and begin to incorporate bias that will give leverage to the 
learning process. [p32]  

Kaelbling et al. acknowledge that learning from scratch is not sufficient for 

reinforcement learning to be effective for larger problems. They suggest that sensible 

biasing and leveraging of learned information be used to address reinforcement learning’s 
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failure to perform on large-scale problems. That suggestion is taken very much to heart in 

this research.  

One common and sensible biasing solution is to perform a comparison of features that 

describe a stimulus or a response. Most supervised learning techniques rely on feature 

comparison to generalize from the training set to the test set (see Support Vector 

Machines as an example). In many cases it is quite rational to assume stimuli that “look 

similar” should have similar responses or even share the same response; however, there 

are two major drawbacks to this approach. The first drawback is that for each new 

problem domain, a new and appropriate comparison operator must be defined; there is no 

general comparison operator that can be used. The second drawback is that not all 

problems allow the application of tractable similarity metrics, especially those with 

categorical stimuli or responses. 

For example, in the field of natural language processing, it is very difficult to measure 

the distance between the words “cat” and “fuel”. As a fanciful example, an inappropriate 

distance metric could result in buying gasoline when one needed cat food; or worse, 

feeding the cat gasoline because the cat needed “fuel”. To avoid both of these drawbacks, 

the solution cannot depend on the meaning of the stimuli or the responses. 

In the general case, the only other possible source of potentially useful information 

that can be shared is in the stimulus-response space (histogram) of an adaptive learning 

engine. Currently, there are no machine learning techniques that use this source 

information without a high risk of becoming stuck in suboptimal solutions (e.g., hill 

climbing, local beam search, and, in some cases, Genetic Algorithms [Russell & Norvig 

2003]). Thus, any method applied to reinforcement learning that makes use of previously 

learned information must minimize the risk of settling on suboptimal solutions. In 
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addition, any solution should allow the learning agent to apply previously learned 

responses to new stimuli only as long as the responses prove consistently effective. 

1.2  Problem Statement  

Although comparing feature-vectors in the domain of a classifier can be a powerful 

mechanism for generalization, it requires a meaningful similarity metric, which is often 

very difficult or impossible to devise (e.g., with categorical features). As an alternative, 

allowing random selection of responses may provide the advantage of promoting 

exploration, but it can be very slow and can easily result in suboptimal solutions. 

Nonetheless, there is a great deal of information in the stimulus-response space of a 

learning agent that perhaps can be exploited to assist in decision-making, even in the 

early stages of the maturation of the learning agent.  

Research Problem: Is there a general and effective method to exploit the knowledge 

accumulating in the decision space of an adaptive learning agent 

to improve classification performance without comparing feature-

vectors or incurring the cost of excessive random exploration? 
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CHAPTER 2: RELATED W ORK 
 

 

 

 

 

 

2.1 The Psychological Basis of Infant Learning  

Understanding how newborn children learn is pertinent to this research. This research 

is primarily concerned with learning in its earliest stages, when little or nothing has been 

learned about the self or the environment. The reason for this focus lies in the basic 

assumption that as humans mature and develop more cognitive capacity, they begin to 

employ various kinds of feature-vector comparison and analysis on many different levels 

of cognition. Even very young children can categorize people and objects and make 

decisions about what to do with those things.  

If a young child lives in a household with a pet German Shepherd, he will soon learn 

to recognize other dogs as potential pets and will often take great delight in watching or 

petting other dogs. This kind of behavior suggests that the young child is generalizing 

something about dogs, perhaps the fact that dogs are hairy, or that they have four legs and 

a tail. The fact that the child will extend his knowledge about his household pet to all 

other dogs but not to, say, dishes or cars, suggests that the young child must be 

generalizing about what makes a dog a dog.  

Studies have shown that by 12 months, children’s memory and problem solving skills 

become significantly less context-dependent (Hartshorn et al. 1998; Hayne, Boniface, & 
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Barr 2000), meaning that children do not need to be in the exact same situation in order to 

remember how to perform a task or recognize an object. These studies argue in favor of 

children’s ability to generalize learned responses to relevant, new situations (Berk 2003). 

Once children exhibit what computer scientists would call feature-vector analysis and 

what psychologists would call generalization, the psychology of learning and 

development is no longer useful for this research. Clearly, machine learning research 

must eventually tackle the problem of automatic feature selection because it is a vital part 

of learning and intelligence. However, that is well out of the scope of this research.   

Many psychologists have developed theories of child development and have studied 

young children, but a much smaller number of psychologists have based their work and 

theories on neonates, newborns less than 6 months old (see [Berk 2003] for an excellent 

textbook on child development). Perhaps most famously, Freud’s theories largely hinge 

on a person’s childhood experiences, but Freud did not study children himself (Cohen 

2002). 

The reasons that fewer people choose to study neonates are usually practical. 

Neonates are not thought to understand language and therefore cannot have instructions 

explained to them. Neonates are undergoing a period of extremely rapid development. 

Assembling a representative sample of infants of the same age can prove to be 

logistically difficult because even a difference in age of a week can represent a significant 

difference in cognitive ability. Additionally, describing and quantifying neonate behavior 

can be very difficult because of neonates’ short attention spans and strong reflexive 

behaviors (Berk 2003). 

This is not to say that no one has done significant work on neonates. Work has been 

done in the areas of understanding neonatal reflexes, neonatal classical conditioning 
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learning capacities, neonatal operant conditioning learning capacities, and habituation 

and recovery studies, which demonstrate the extent to which infants can categorize or 

generalize. An overview of these areas of research is presented here. 

Neonatal reflexes: A newborn’s reflexes are the first signs of organized behavior. 

Some of these reflexes persist into adulthood (i.e. eye blinking in response to bright light 

or a puff of air in the face, sucking on an object placed in the mouth) while others 

disappear a few months after birth (i.e. rooting, the reflex which causes a neonate to turn 

its head in the direction of stimulation on the side of the face). Most reflexes are believed 

to serve an adaptive purpose. For example, the grasping reflex is thought to help babies 

hang on to their caretakers when carried and the swimming reflex is thought to help 

babies stay afloat long enough to allow for rescue should they fall into water (Berk 2003).  

Brazelton’s Neonatal Behavioral Assessment Scale (NBAS): Because neonatal 

reflexes are so strong and appear to be universal, assessing them at birth can be a very 

useful diagnostic tool for doctors. If a reflex response is abnormally weak, it may signal a 

problem with the development of the nervous system. T. Berry Brazelton has studied 

neonatal reflexes for most of his career and developed a scale that can be used to assess 

the health of neonates (Brazelton & Nugent 1995). In addition, this assessment has 

proved to be a useful tool for educating mothers about how to respond to their neonate’s 

needs (Eiden & Reifman 1996).  

Classical Conditioning in neonates: Neonatal reflexes force reactions to the 

environment, but neonates also use them to learn about stimulus-response relationships. 

Classical conditioning provides an important way for neonates to begin to make sense of 

their environment and helps them anticipate events in their world. Neonates can quickly 

learn relationships important to their survival through classical conditioning. In fact, the 
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ability to learn through classical conditioning is present from birth.  

In classical conditioning, an unconditioned stimulus is a stimulus that produces a 

reflexive, or unconditioned, response. An example of this would be the neonatal reflex of 

sucking on a nipple when it is presented. The nipple produces the sucking reflex and the 

baby takes in milk. If a neutral stimulus, like gentle stroking on the head, is introduced 

consistently during feeding, neonates will quickly learn that head-stroking and feeding go 

together. After a short period of conditioning, a matter of hours, a neonate will 

demonstrate the conditioned response of sucking if presented with the newly conditioned 

stimulus of head-stroking (Blass, Ganchrow, & Steiner 1984).  

Operant conditioning in neonates: Operant conditioning is a kind of learning that 

takes advantage of spontaneous behavior. When a spontaneous action is followed by a 

reinforcing stimulus, it changes the probability that the spontaneous behavior will occur 

again. For example, if a young infant “smiles” inadvertently when a parent is watching, 

the child will most likely receive a great deal of reinforcement in the form of attention 

from the parent. Enjoying the attention, the infant is more likely to repeat this behavior in 

the future.  

As newborns, there is very little that babies can control, but they are still capable of 

operant conditioning. In the first weeks of life, head turning and sucking are about all that 

babies can voluntarily control (Berk 2003). Sucking has been used to study infants’ 

ability to categorize sounds. In one experiment, a tape of the mother’s voice was played 

when babies sucked on a non-nutritive bottle at a given speed. The tape stopped when the 

babies stopped sucking on the bottle or when their sucking pattern deviated from the 

desired speed. Neonates demonstrated the capacity for learning through operant 

conditioning by learning to suck at the speed required to hear the mother’s voice. 
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Additionally, neonates demonstrated that they preferred to hear their mothers’ voice over 

other adult voices by learning a second sucking pattern (Floccia, Christophe & Bertoncini 

1997).  

By three months of age, infants can also control leg kicking. Studies by Shields and 

Rovee-Collier (1992) have used leg kicking to investigate infant memory. In their 

experiment, infants were placed in a crib and had one leg attached to a mobile. The 

infants learned to kick their leg in order to see the mobile move. This behavior is an 

example of learning through operant conditioning.  

The studies by Shields and Rovee-Collier were focused on infant memory and 

generalization ability. The study found that the youngest infants (2-3 months old) could 

repeat the kicking motion the next day only if they were placed in the same crib. If 

anything were altered in the environment (i.e. the color of the crib mattress), the youngest 

infants would take as long to discover the kicking motion as they did in the first learning 

phase. However, if they were placed into the exact same setting, the kicking motion was 

repeated almost immediately. This study showed that neonates were relying heavily on 

all aspects of the environment for learning and memory. 

The studies of neonatal reflexes, classical conditioning, and operant conditioning 

learning provide a wealth of information about what neonates are capable of learning, but 

they do not provide a unified theory of how neonates are learning. Jean Piaget provides 

the strongest and most widely accepted general theory of how and why certain abilities 

emerge in neonates. He also produced an extensive theory of development which he 

applied to older children, adolescents, and adults.  

His theories are not without critics. Many people have questioned the specific ages at 

which Piaget claimed certain capacities emerged (Miller 1993; Siegler & Ellis 1996; 



 

 12  

Bjorklund 2000). However, his theory offers a general road map that still proves very 

useful. His findings have served as the starting point for almost every contemporary 

perspective on child development in the past 50 years (Berk 2003). It is to Piaget’s work 

that one must look, then, to try to understand what is happening in the neonatal mind and 

how the neonate approaches the world.  

2.1.1 The Theory of Jean Piaget  

The Swiss psychologist Jean Piaget developed his theory of child development in the 

late 1920’s. Over a long career, he studied many different aspects of child development 

and behavior. His early writings were based on careful observation of his own children. 

He later established a center for study in Geneva and became one of the most respected 

authorities in the field of psychology.  

His work has had a tremendous impact on the way educators and psychologists view 

children and their development. One of his major contributions was to portray children as 

active, curious knowledge seekers. His major ideas about child development are outlined 

in this section. Although many of the particulars about when certain behaviors emerge 

and if development occurs in rigid, fixed stages have been disputed, his work still 

provides a very useful guide to child development (Berk 2003). In this research it is 

assumed that Piaget’s fundamental ideas are sound and that his work provides a 

reasonable foundation for the solution used in this research.  

Assumption 01:  The fundamental ideas of Jean Piaget provide a valid 

psychological basis for this research. 

In his work, Piaget dealt with the stages of development that all children must pass 

through as they mature and the schemes children use to codify their abilities and 
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understanding of the world around them. In this section, the stages of development are 

discussed first and then schemes are explained in more detail.   

Stages of Development. Piaget believed that children went through four major stages 

of development: sensorimotor, preoperational, concrete operational, and formal 

operational. These four stages explain how an infant moved from reflex-based behaviors 

into the mature, abstract, and logical thought of adolescence. Piaget’s theory has three 

major properties. First, it is a general theory, meaning that it assumes that all aspects of 

cognition develop in an integrated fashion. Second, the four stages are invariant, meaning 

that children must pass through each stage in order and no stage can be skipped, although 

it is possible that later stages may never be attained. Third, the stages are said to be 

universal, meaning that they should apply to all children everywhere (Piaget, Inhelder & 

Szeminska 1948/1960).  

Piaget thought that development must be rooted in biology and was the result of the 

brain developing and becoming increasingly adept and analyzing and interpreting 

experiences common to all children. Piaget accounted for individual differences in rates 

of development by pointing out that genetic and environmental factors held significant 

sway over the speed with which children would move through each phase (Piaget 

1929/1928).  

Piaget’s stages deal largely with the way in which a child organizes structures for 

making sense of the world and how this organization changes over time. These organized 

structures are called schemes. In the early stages, schemes are physical routines that the 

infant has mastered, such as voluntarily reaching for objects of interest or making 

voluntary vocalizations. As the child matures, the schemes begin to include mental 

representations of the world. The understanding of object permanence is one of the 
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earliest demonstrations of a mental representation. The shift from purely physical 

schemes to mental representation schemes is a major one in Piaget’s theory and marks the 

transition from a physical exploration of the world to a cognitive and mental exploration 

of the world (Berk 2003).  

The four stages are broadly outlined here. For the purposes of this research, the first 

stage is most important and is discussed in more detail later. The first stage, the 

sensorimotor stage, generally extends from birth to 2 years. During this stage, infants are 

focused first on their own bodies and then later on objects in their immediate 

environment. In the sensorimotor stage, intentional goal-directed behaviors emerge and, 

later, children begin to explore the properties of objects by manipulating them in 

interesting ways. By the end of the sensorimotor stage, children begin to show evidence 

of mental representations by coming up with sudden solutions to problems and by 

engaging in make-believe play.  

With the emergence of mental representations, the child enters into the 

preoperational stage that generally lasts from two to seven years of age. In the 

preoperational stage, mental representations grow rapidly and become increasingly more 

complex. Make-believe play becomes more detached from the immediate environment. 

For example, children in the preoperational stage will happily pretend that a cup is a hat, 

but children still in the sensorimotor phase will refuse to pretend that a cup is anything 

un-cup-like (O’Reilly 1995).  

Another major milestone accomplishment of the preoperational stage is the ability to 

understand the relationship between a symbol and the real world. In a study by DeLoache 

(1987), children were shown a physical model of a room and watched as an adult hid a 

miniature toy (a small Snoopy) somewhere in the model room. The children were then 
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asked to find the toy (a bigger Snoopy) in a real room. Children younger than three years 

could not accomplish this task, but older children were quite capable. The younger 

children seemed to be struggling with the idea that the model room was not only a toy but 

also a symbol of another room (Berk 2003).  

The understanding of symbol-to-real-world relationships grows more sophisticated 

during the preoperational phase and, by seven years of age, most children are quite adept 

at following simple maps and understanding that one abstract object can stand for another 

object in the real world. During the preoperational stage, children begin to form 

hierarchical categories and can break categories into basic-level categories (e.g. chairs, 

tables, sofas), subcategories (e.g. kitchen chairs and desk chairs), and superordinate 

categories (e.g. furniture).  

Even though the preoperational stage is typified by a dramatic increase in a child’s 

mental representations, Piaget claimed that a child’s thoughts were not very logical or 

organized. Organized thought emerges during the concrete operational stage, which 

generally lasts from 7 to 11 years of age. During this time, children’s mental 

representations become more abstract and start to take on logical forms. One of the 

classic examples of this in Piaget’s theory is the idea of conservation of volume. Children 

in the preoperational stage will watch water poured from a wide shallow container into a 

tall skinny container and claim that there is now more water in the tall container. Piaget 

explains that children in the preoperational stage can only mentally represent one 

dimension of an object at a time. During the concrete operational stage, children expand 

their mental representations to include multiple dimensions of a conservation problem. 

During this phase, children’s hierarchical categories become more flexible and they 

become more aware of classification relations (Ni 1998).  
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The last phase of development is the formal operational stage. Most children enter 

this stage around 11 years of age. Whereas a concrete operational child can only operate 

on objects in reality, formal operational children are able to operate on other operations. 

Concrete things and actual events are no longer required as objects of thought (Inhelder 

& Piaget 1955/1958). Adolescents become able to reason in a scientific manner, moving 

from a general theory to a hypothesis and then are able to test the hypothesis in an orderly 

fashion. When children are in the concrete operational stage, they can only come up with 

the most obvious predictions about how to solve a problem. When these fail, they are 

unable to think of other alternatives and fail to solve the problem (Berk 2003). Another 

major characteristic of the formal operational phase is propositional thought. Adolescents 

can evaluate the validity of verbal or written statements without having to check them 

against evidence in reality.  

Development of Schemes. Throughout all four stages of Piaget’s theory, children are 

using schemes to codify their knowledge of their own abilities and their knowledge of the 

world around them. These schemes start out as physical routines and become mental 

representations. Schemes are incorporated into the thought process by the use of one of 

four mechanisms: assimilation, accommodation, equilibrium, and organization. A 

cornerstone idea about Piaget’s schemes is that they are all acquired and built through 

direct interaction with the environment. Only through interaction with the environment is 

there any impetus to learn, acquire new behaviors, or change existing ones. In recent 

years, Piaget’s ideas of schemes and equilibration have been criticized for being too 

vague. In fact, the most specific definition of a scheme is “a very broad way to denote 

organized behavior” (Evans 1973).  It is not clear exactly what is being assimilated and 

accommodated, but because Piaget was focused on broad changes in behavior his ideas 
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remain useful tools for discussing developmental changes (Miller 1993, Siegler & Ellis 

1996).  

Assimilation. During assimilation, existing schemes are used to interpret the external 

world. An 18-month-old girl with a small, but functional, vocabulary may refer to every 

animal she encounters as “doggie”. Likewise, an even younger child may have mastered 

a scheme for holding a small object in his hand and dropping it. It is a simple release of 

the fingers. The child may enjoy dropping any small object he can find, but they are all 

manipulated in the same way.  

Accommodation. In accommodation, new schemes are created or old schemes are 

adapted into new and different ones when it becomes apparent that the current schemes 

do not adequately capture or describe the environment. Recall the girl mentioned in the 

previous example and imagine that she is now two and a half years old. She has now 

expanded her vocabulary considerably and has many more names for different animals 

(doggie, kitty, horse, cow, duck, bird, etc.). Imagine her first trip to the zoo. When she 

first encounters a platypus, she may be seen to stare for a few moments before 

pronouncing the strange new animal to be a “duck-doggie”. In this case she has noticed 

that none of her current schemes are quite appropriate for the new animal and so she 

accommodates an existing scheme and creates a new one for the platypus. As the young 

boy with the dropping scheme grows up, he will learn to accommodate his dropping 

scheme for different objects based on their shape and texture. He will soon further 

accommodate his dropping scheme by changing the force with which certain objects are 

released. To the great joy of his parents, he has now adapted a new scheme: throwing.  

Equilibrium. Equilibrium describes periods of time when a child is assimilating 

more often than accommodating. These are periods of relative cognitive ease for the 
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child. Most things fit easily into existing schemes. This is contrasted with periods of 

disequilibrium where a child’s schemes are largely not effective for the environment and 

the child experiences “cognitive discomfort” (Berk 2003). When in disequilibrium, a 

child must shift the balance away from assimilation and towards accommodation. Piaget 

also used the term equilibrium to refer to the constant ebb and flow of assimilation and 

accommodation.  

Organization. Although assimilation, accommodation, and equilibrium are all 

processes that require interaction with the environment, organization is a strictly internal 

process. In Piaget’s view, organization was an important part of equilibrium. After 

acquiring new schemes, children relate schemes to each other and create a broad network 

of relationships (Piaget 1936, 1952). 

Sensorimotor Stage. In Piaget’s theory, the sensorimotor stage represents the period 

of greatest cognitive development in children. Due to the rapid change during this stage, 

the sensorimotor stage is broken down into six substages. For the purposes of this 

research, the first three substages are of the greatest interest and will be discussed in more 

detail. The 6 substages are summarized below: 

1. Reflexive schemes (birth to 1 month): behaviors limited to newborn reflexes 

2. Primary circular reactions (1-4 months): simple “motor habits”, centered on the 

infant’s own body 

3. Secondary circular reactions (4-8 months): actions intended to repeat interesting 

experiences and effects in the surrounding environment 

4. Coordination of secondary circular reactions (8-12 months): goal-oriented 

behaviors, ability to find some hidden items 

5. Tertiary circular reactions (12-18 months): exploration of the properties of objects 
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by operating on them in novel ways 

6. Mental representations (18-24 months): ability to internally depict events and 

ideas, appearance of sudden solutions to problems 

For the purposes of this research, substages 1 through 3 are of the most interest. 

During the first 6 to 8 months, children are heavily context dependent. This is to say, the 

neonates are not capable of much generalization over different contexts (Shields & 

Rovee-Collier 1992). Although they are active investigators of their own bodies and 

surroundings, they are not yet capable of complex problem solving. If this idea is 

extended a bit farther, it is possible to say that neonates are performing only a minimal 

amount of feature analysis and therefore not generalizing from one situation to the next. 

Pulaski (1980) describes the behavior of a neonate assimilating his first scheme: 

“But sometime during the first month the baby’s fist accidentally finds its way 

into his mouth. By reflex action he begins to suck on it and apparently finds 

this activity satisfying. At any rate, the baby repeats this action over and over 

again until he learns to bring his fist to his mouth at will. After that, not only 

his fist, but also everything else he grasps will find its way into his mouth. ‘For 

him’, says Piaget, ‘the world is essentially a thing to be sucked’.” (p. 20) 

In substages 1 through 3, Piaget outlines how newborn transitions from having 

nothing but reflexes that dictate all responses to the environment to having a repertoire of 

simple schemes with which she can begin to explore her world. This period is also one of 

rapid physical changes and brain development. For the purposes of this research, it is not 

possible to mimic the changes, which expand the number of responses an infant may 

make to her environment. In this research, the learning agent need only learn the correct 

transform of stimulus to response. 
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Defintion 01:  Learning agents are endowed with a fixed number of responses 

(classes), i.e., the cardinality of the response range (intent) is 

fixed.  

Piaget’s theory also discusses the idea of organization whereby schemes are 

rearranged and related to one another. Modern adaptive learning methods (e.g., 

Collective Learning Systems) might be able to achieve this through the use of 

hierarchical systems. However, this research focuses only on a single learning agent, 

albeit an agent with arbitrarily complex domains and ranges.  

Defintion 02:  Only single-layer, non-hierarchical learning systems are 

considered in this research. 

This research focuses only on a single-layer, non-hierarchical learning system, and so 

the earliest stages of development are the most interesting because it is assumed that a 

newborn’s brain and behaviors are the least organized and developed. Although statistical 

learning and machine learning methods cannot begin to replicate the complexity of the 

brain, studies of and theories about older children and adults often deal with many layers 

of judgment, categorization, analysis, social interaction, and language that would 

interfere with the main question of this research: is it possible to apply existing solutions 

to new problems without doing any feature analysis? By examining the early stages of 

development, it is assumed that evidence might be found for such a mechanism in the 

brain.  

Substage 1 - Reflexive schemes (birth to 1 month). During the first substage, 

neonates are acting entirely based on reflexes. Piaget viewed these reflexes as the 

building blocks for sensorimotor development. During the first month, a baby will always 
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produce the same responses to the same stimuli. This repeated action gives consistent, 

ordered feedback to the baby. For example, an infant will suck on anything placed in his 

mouth and always turn his head in the direction in which his cheek is rubbed.  

Substage 2 – Primary circular reaction (1 to 4 months). During the second 

substage, infants begin to gain some voluntary control over their actions. Many reflexes 

are still powerful, but infants discover that they can repeat some action that first occurred 

randomly. These actions are almost entirely centered on their own bodies. Piaget referred 

to these as primary circular reactions. The word “circular” is used because infants will 

often repeat the same action many times in succession as they assimilate a new scheme. 

For example, an infant may accidentally move her fist to her mouth. By reflex, she starts 

to suck on it. Finding this sensation pleasing and soothing, she will attempt to bring her 

fist to her mouth again the next time it passes into her field of vision (Berk 2003, Pulaski 

1980).  

Substage 3 – Secondary circular reactions (4 to 8 months). In the third substage, 

children begin to exhibit secondary circular reactions. These differ from primary circular 

reactions because they are moving away from the child’s body and outwards towards her 

environment. By the fourth month, children have acquired a few schemes from their 

primary circular reactions, for example, voluntary sucking, grasping, and leg kicking. 

Once the infant has some level of control over her body, she can begin to explore her 

environment.  

She can swing her arms towards a mobile suspended over her crib. When she makes 

contact with the mobile, she can watch the mobile move with great interest. Piaget 

describes this sort of outward directed behavior as “the first outline of what will become 
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classes or concepts… perceiving an object as something ‘to shake’, ‘to rub’, etc.” (Piaget 

1952).  

In the third substage, infants accommodate their body-focused schemes into object-

focused schemes. When an infant encounters a new object in her environment in the third 

substage, she will attempt to apply one of her schemes to it in an attempt to discover if 

this object is a good object to rub, or to suck, or to kick. With secondary circular 

reactions, infants are primarily assimilating new experiences and objects into existing 

schemes. This is not to say that no new schemes are accommodated during the third 

substage, but in the third substage, infants are not spending much time experimenting 

with new schemes, but rather they are applying known schemes to new objects and 

situations.  

This idea of applying known solutions to new problems, without regard for particular 

features of an object is exactly the kind of solution this research seeks to implement.  

2.2 Applications of Piaget’s ideas to Artificial Intelligence 

Piaget’s ideas have attracted the attention of the machine learning and artificial 

intelligence communities. This section presents a brief overview of the application of 

Piaget’s theories to machine learning and artificial intelligence as they relate to this 

research.  

2.2.1 Drescher (1991)  

Gary Drescher used Piaget’s ideas of schemes and constructivist learning in a 

massively parallel neural network-like implementation. Starting with a few basic 

schemes, the learning agent expanded its knowledge by exploring its environment. His 

work showed some very interesting results. The learning agent was able to successfully 

construct new schemes and succeed at increasingly complicated tasks.  
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One of the important aspects of Dresher’s work was the ability to create new 

schemes, or classes, as learning increased. Although finding a reasonable and generalized 

way to do just that is an open topic in Collective Learning Systems, the learning 

paradigm used in Drescher’s research, is outside the scope of this research. As previously 

defined in Definition 01, the possible schemes or actions remain fixed for all of the 

treatments in an experiment. See Section 2.5 for more information about Collective 

Learning Systems. 

In Dresher’s work, schemes were expressed as propositional logic. This research 

focuses on Collection Learning Systems, which do not deal with propositional logic. In 

addition, Drescher developed a specialized parallel processing architecture for his 

learning agent, similar to an artificial neural network (ANN). Because this research only 

considers Collective Learning Systems (CLS) theory, it is not possible to extend any 

conclusions to ANNs or any other machine learning paradigm.  

2.2.2 Birk (1996); Birk & Paul (2000)  

Birk (1996, 2000) was interested in combining Dresher’s approach to schemes with 

genetic algorithms. Birk (1996) applied his approach to a computer model of a robot arm 

and in (Birk & Paul 2000) applied similar ideas to a physical robotic arm. As has been 

noted earlier, this research is restricted to CLS theory and does not attempt to extend to a 

robotics or evolutionary programming application. 

A common theme between this research and Birk’s is the desire to design learning 

algorithms that would be independent of any particular problem. Birk was interested in 

using evolutionary programming to generate the preconditions for using schemes but this 

addition was not dependent on the robot model nor on the task set for the learning agent. 

Although Birk succeeded in developing a new system which was problem independent, 
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the stimulus-response rules, Birk’s name for what Drescher called schema, are entirely 

context dependent, and no attempt is made to translate the lessons learned in one context 

to another context. This research seeks to leverage learned knowledge to improve 

performance on new problems. 

2.2.3 de Jong (1999)  

de Jong was intrigued by Dresher’s ideas, but was most concerned with developing a 

machine learning agent that could observe and learn about an environment that changed 

not just in response to an agent’s action. de Jong’s work focused multi-agent systems and 

inter-agent communication. The major goal for de Jong’s learning agents was to decide 

when to take advice from the agents’ personal percepts or information coming from other 

agents. That is, in a multi-agent environment, each individual agent had a limited percept 

region or “field of view”. All agents broadcast their perceptions to all other agents at all 

times. Individual agents then had to learn when information coming from another agent 

might be useful.  

Defintion 03:  This research does not consider multi-agent systems. 

Although this research does not consider multi-agent problems, it looks as if de 

Jong’s approach could be recast as a single agent problem. If it were, de Jong’s work 

might provide the solution to the problem this research is investigating: a way to apply 

knowledge from another situation to a current, possibly unrelated situation; however, this 

analogy falls apart upon closer inspection.  

In the multi-agent situation presented by de Jong, considering information from 

another agent adds more information to the feature vector. Therefore, either the signals 

from other agents and an individual’s percepts must be combined into a new stimulus or 
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an analysis of the feature vectors is necessary for this kind of learning. If the first option 

is chosen, then de Jong’s method does not provide a solution because adding more 

stimuli does not provide a way to communicate knowledge from one stimulus to another. 

If feature analysis is necessary to make use of the increased knowledge, then this is not 

an appropriate solution because this research mandates an improvement to learning that 

does not rely on the analysis of feature vectors in any way.  

2.3 The Pigeonhole Principle  

The previous section discussed the application of Piaget’s theories of child 

development to machine learning. Psychology is not the only field that can serve to 

inform machine learning. Indeed, from discrete mathematics, the concept of the 

Pigeonhole Principle provides some useful insight for the problem considered in this 

research. 

The Pigeonhole Principle states that if there are n pigeons and, at most, n-1 holes and 

all the pigeons are in holes, then there must be at least one hole with more than one 

pigeon in it. To put it more formally, consider the function f where f: S → T and where S 

and T are finite sets satisfying |S| > k|T|. Then at least one of the sets f -1 (t) has more than 

k elements. (Ross and Wright 1988, p207). 

Although this may seem obvious, the Pigeonhole Principle is a very useful tool for 

problem solving. To put it in the context of adaptive learning, an agent’s stimulus domain 

is almost always significantly larger than its response range. A minor exception to this 

may occur in the early stages of learning if an agent is dynamically allocating its domain. 

Although the agent starts out with a domain size of zero, stimuli will quickly be added 

during training and in a short time the size of the domain is larger than the size of the 

range. 
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Assumption 02:  When training is complete, the final cardinality (extent) of the 

stimulus domain is greater than or equal to the cardinality of the 

response range. 

Given that there is a greater number of stimuli than responses, the Pigeonhole 

Principle can be used to prove that at least one response must have more than one 

corresponding stimuli. This proof gives further credence to the idea of trying a solution 

that works for one problem to solve a new problem in a new context.  

Assume that there is only one correct response for each stimulus. If an agent picks 

random choice from n responses, then there is a 
�
	 probability of picking the correct 

response. By selecting a response, ω, that is known to work in another context, the agent 

has a slightly higher probability of picking the correct response. Because the number of 

stimuli is greater than n, the probability of ω being the correct response is ,��� - �
	. On 

the other hand, if ω is not an effective response for the new stimulant, very little has been 

risked because a random choice was also very likely to be wrong.  

2.4 Reinforcement Learning  

Reinforcement learning is a machine learning paradigm that encompasses an entire 

class of approaches. Generally, the learning agent is in contact with an environment 

through its perception of the environment and the actions it can perform in the 

environment. The learning agent receives information about the current state of the 

environment and then attempts to pick the most appropriate action. When the agent 

performs an action, the state of the environment changes and the agent receives feedback 

about the value of the action and the new state of the environment. The agent’s main goal 

is to maximize the return of its value function in the long term (Barto & Dietterich 2004). 
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2.4.1 Environment  

There are few requirements made on the environment in reinforcement learning. Most 

importantly, the environment must respond to each action of the learning agent. The 

environment does not need to be fixed. In fact, one of the strengths of reinforcement 

learning is that learning agents can adapt over time to a changing environment 

(Kaelbling, Littman, & Moore 1996). 

2.4.2 Agent’s Perception of the Environment  

The learning agent must be able to perceive its environment in order to make an 

intelligent decision. The environment, at any given time, is represented by some input 

function I. It is generally assumed that I gives a full representation of the environment, 

but that is not a requirement. In most real-world problems, it is not possible to have 

complete knowledge of the environment; however, reinforcement learning problems are 

often constructed as Markov Decision Problems and therefore a complete view of the 

environment is optimal (Sutton & Barto 1998). 

2.4.3 Reinforcement Signal  

The goal of the learning agent is to optimize performance based on an unknown (from 

the learning agent’s perspective) reinforcement signal, usually represented as some scalar 

valued function. This signal may be stochastic or deterministic and it may change over 

time. Learning agents are also interested in optimizing the long-term value of the 

reinforcement signal; it must learn to balance large immediate rewards against larger 

projected rewards in the future (Kaelbling, Littman, & Moore 1996, Bock 1993). 

A learning agent’s goal may appear to be simple function optimization, but the 

learning occurs in the sense of long-term memory. Barto & Dietterich (2004) give the 

example of trying to find good cell phone reception in an outdoor setting. A person trying 
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to find good cell phone reception may wander around looking at the signal bars or asking 

the person on the other end of conversation “Is this better? How about now?”  

Once a good spot is found, the person with the cell phone is likely to make a note of 

it, especially if it is on his regular travel route, and return there directly the next time he 

needs to make a call. Likewise, a learning agent in a reinforcement learning system may 

struggle to find a state that optimizes the reinforcement signal for the problem or some 

subset of the problem; however, once that state has been found, the learning agent can 

return there directly.  

2.4.4 Agent Actions  

When the learning agent chooses an action, its action affects the state of the 

environment. Because the goal of the learning agent is to maximize its long-term reward 

and because the reward function is based on the current state of the environment, it is 

possible that any given action will affect more than the immediate reward. If the agent’s 

action moves the environment into a more favorable position, this could affect the 

rewards the agent receives for the rest of its learning cycle. Likewise, a particularly bad 

move could negate the possibility of the learning agent ever optimizing its reward 

function (Heckman 2004). 

2.4.5 Policy  

The learning agent is attempting to find a policy, p that maximizes the reinforcement 

signal. This policy can change over time to accommodate the feedback from the 

reinforcement signal. There is no standard form that this policy takes in reinforcement 

learning. It can be a simple look-up table or a complicated algorithm for computing the 

next appropriate response (Barto & Dietterich 2004; Sutton & Barto 1998). 
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2.4.6 Unsupervised Learning 

It should be noted that reinforcement learning is not the same as supervised learning 

(Barto & Dietterich 2004; Kaelbling, Littman, & Moore 1996). In supervised learning, 

agents are often presented with a series of correct input-output pairs during training. They 

organize that information in some way, and the organization is tested. In reinforcement 

learning, feedback from the reinforcement signal is presented online, during learning 

instead of beforehand. Additionally, an agent in a reinforcement learning system does not 

receive corrective information about which response it should have chosen in a previous 

state. If it did, this could be considered a form of supervised learning.  

2.4.7 Model of the Environment   

In some cases, agents in reinforcement learning systems may be provided with or may 

develop a model of the environment. This model mimics the behavior of the real 

environment. The model may be provided to the learning agent, or the agent may develop 

and improve the model over time. This model can be useful to the learning agent because 

the agent can “imagine” what the outcome of a given response is likely to be. This model 

is not always a part of a learning agent, as the agent’s policy eventually comes to dictate 

the appropriate response to the input signal (Heckman 2004). 

2.4.8 Practical Uses of Reinforcement Learning  

Reinforcement learning has been applied to real-world problems because a flexible 

learning system is a very attractive solution when the environment and the requirements 

of the system are changing. Areas of practical research that have used reinforcement 

learning include robotics, computer games, industrial manufacturing, credit card risk 

assessment, and predicting user’s internet browsing behavior (Barto & Dietterich 2004; 

Kaelbling, Littman, & Moore 1996). 
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2.5 Collective Learning Systems Theory 

Collective Learning Systems Theory is a statistical learning paradigm that has much 

in common with reinforcement learning. It was first developed by Bock in 1976 and has 

been refined continuously over the years (Bock 1976; Bock 1985; Bock et al. 1990; Bock 

1993; Bock & Riopka 2000, Bock & Heckman 2002). This section presents an overview 

of a Collective Learning System and its major components. All definitions and citations 

are from (Bock 1993) unless otherwise noted. 

2.5.1 Introduction  

In a Collective Learning System (CLS), one or more learning agents interact with 

their environment, encountering different stimuli and producing responses from the 

repertoire of possible actions. A learning agent receives periodic evaluations of its 

performance and uses these evaluations to compile statistics about the effectiveness of its 

actions. The goal of a learning agent is to converge to the correct probabilistic mapping 

of stimuli to responses.   

In a CLS, the learning agent is called a Collective Learning Automaton (CLA ). A 

CLA learns the appropriate response for each stimulus by selecting responses at random 

until one emerges as statistically optimal, guided by feedback from an evaluating 

environment. This process of learning through positive and negative feedback is known 

as the algedonic cycle (Beer 1966). Learning agents try to maximize positive outcomes 

and minimize negative ones.  

The process of learning, in all arenas, must take place over time and must 

involve some set of rules and a means to evaluate performance. No matter 

what the task, be it playing checkers or sustaining a successful relationship 

with a spouse, the previous statement holds true. The rules may change over 

time and expectations and evaluations may differ with experience, but they 

are still there. For this reason, it is possible to frame all learning tasks as 
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games, where a game is defined as a set of rules governing a contest among 

several players in a specified environment (Bock 1993). 

For the purposes of conducting canonical experiments with a CLS, the associated 

game is usually defined in this sense, as well as in the colloquial sense. There is further 

discussion of the game that is used for this research in Section 3.4, but this definition of a 

game quoted above will serve for this discussion. 

Some games require a great deal of knowledge about how one came to be in a certain 

state in order to make a good decision about what to do next. The number of states in the 

past which a player is allowed to consider is called the backward context. Likewise, the 

number of potential moves into the future a player is allowed to search is called the 

forward context.  

Being able to predict the future is a very powerful tool. Heckman (2004) implemented 

and explored the effect of forward context in CLS. Although forward context is useful, it 

is not necessary for all learning tasks. Thus, in order to limit the scope of the  research, no 

games requiring forward context are used in the canonical experiments.   

Defintion 04:  CLAs will be implemented without forward context. 

The CLA is embedded in an environment that sends a stream of stimuli to the CLA 

and periodically issues evaluations of the CLA’s responses to these stimuli. The major 

feature of CLS that sets it apart from other reinforcement learning methods is that the 

CLA’s performance is evaluated only periodically, based on the assumption that periodic 

evaluations from the environment are a more realistic model of the real world. For 

example, in school, followers receive feedback about their performance only a few times 

during the semester when they receive grades for their assignments. In a complex 

environment, it is usually impractical, and often counterproductive, for the environment 
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to provide feedback for each and every action taken by the learning agent. Therefore, 

evaluations are usually collective. Figure 1 shows a CLS, including all the major 

component parts.   

The environment encompasses everything outside the CLA. The environment 

provides a series of stimuli to the CLA. The CLA examines its memory, a State 

Transition Matrix (STM), and chooses a reponse to each stimulus according to its 

response-selection policy. The responses are returned to the environment. Depending on 

the game being played, the responses may or may not affect the next stimulus presented 

to the CLA. At some point, the environment provides an evaluation of the CLA’s 

responses. The CLA receives the evaluation and interprets it according to a compensation 

policy. The compensation policy determines how the evaluation should be applied to the 
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Figure 1: A complete Collective Learning System (CLS). The learning agent, the CLA, engages in the algedonic cycle 

to acquire knowledge about the environment, eventually eliciting correct responses to its stimuli. 
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most recently chosen responses. Once an update has been calculated, it is applied to the 

statistics held in the STM. With the updated statistics in the STM, the CLA is ready to 

apply its new knowledge to the next series of stimuli presented to it by the environment.   

2.5.2 Environment  

The environment represents everything outside of the CLA. The environment 

provides stimuli to the CLA and evaluates the responses that come back from the CLA.  

Defintion 05:  The environment of a game includes the necessary space, matter, 

and energy to conduct the game. 

The environment contains everything necessary for the CLA to learn. It generates the 

stimuli, provides the evaluations, and enforces the rules of the game. If the game is 

interactive, i.e., if a response from the CLA affects the next stimulus or the state of the 

game, then the environment keeps track of the changes in the state of the game as well.  

The environment is usually considered to be stationary, deterministic, and correct, but 

this is not a requirement. Many students of CLS theory have experimented with 

unreliable environments, because it is rare indeed that feedback in the real world is 

consistent and correct. Consider the confusing explanations flustered, unprepared parents 

may provide to children to such questions as “why is the sky blue?” or “where do babies 

come from?” Nonetheless, for the research experiments that are conducted under 

controlled conditions, the environment is deterministic and correct. Note that the 

environment is not required to be stationary. Learning to recover from changes in the 

environment (the game) is a very important skill and something that is considered in this 

research.  
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Depending on the game, the environment may or may not change its state based on 

the responses from a CLA. For example, if the CLA is learning to play solitaire, then 

clearly each response changes the state of the environment (or at least the representation 

of the solitaire game). On the other hand, if a CLA is classifying pixels in an image, then 

the responses do not change the state of the environment. The image remains the same, 

no matter what label the CLA assigns to a given pixel. In this case, the environment 

would keep track of the image and the pixel labels provided by the CLA.  

There are no restrictions, in CLS, on the number of learning agents that may be 

contained in an environment. There is also no prohibition against different CLAs working 

in a competitive or cooperative manner; however, this research only focuses on  

environments which contain a single CLA. In other words, this research does not 

consider CLAs that interact with one another in any way.  

Defintion 06:  This research will not consider multi-agent systems. 

2.5.3 Stimulus   

The stimuli are provided by the environment. They are usually encoded as a vector of 

several features, but all that is truly necessary is that significantly different stimuli be 

distinguishable based on a unique identification code. In other words, the environment 

may present some quantized view of the problem domain. The more unique stimuli a 

CLA encounters, the longer learning will take; however, failure to provide enough detail 

may also lead to a failure to learn anything useful.  

2.5.4 Evaluation  

The environment is also responsible for periodically evaluating the responses from 

the learning agent. The learning agent is evaluated based on some evaluation function 
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which generates an evaluation, ξ. The evaluation is usually a numeric value, but there is 

no reason to limit it to a number.  

The evaluation function must be tuned for each game, but the purpose of the 

evaluation is to provide an assessment of the learning agent’s performance that contains 

as little bias as possible. The environment evaluates the learning agent’s performance 

after a series of interactions between the learning agent and the environment.  

There are several terms that deal with the number of responses between evaluations. 

They are contest, collection length, and history. A contest is an instantiation of a game: 

one complete instance of a game played from beginning to end. The collection length, c, 

is the number of responses that the learning agent must make before it is evaluated by the 

environment. Lastly, the history, ηs, of a stage is the collection of interactions that have 

occurred since the last evaluation. The length of the history is the same as the collection 

length.  

Defintion 07:  A contest is an instantation of a game that is one complete 

instance of a game played from beginning to end. 

Defintion 08:  A stage is the phase of a contest that leads to an evaluation. 

Defintion 09:  The collection length, c, is the number of responses that the 

learning agent makes before being evaluated by the environment. 

Defintion 10:  The history, ηηηηs, of a stage is the collection of interactions that 

have occurred since te last evaluation. 

2.5.5 Collective Learning Automaton   

The learning agent in a CLS is known as a Collection Learning Automaton (CLA). Its 

internal structures include a compensation policy, an update policy, and memory, which 
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contains the state transition matrix and generates responses to the environment. 

Defintion 11:  A Collective Learning Automata (CLA ) is a learning agent 

inside a Collective Learning System. 

The CLA itself does not have any function aside from defining the boundaries of its 

internal structures. The internal structures are so important that they are discussed 

separately. 

2.5.6 Compensation Policy  

The compensation policy interprets the evaluations provided by the environment and 

generates a compensation, γ. The compensation policy determines how seriously the CLA 

takes its evaluations. This is roughly analogous to the limbic system, the system in the 

mammalian brain that controls emotional responses.  

Defintion 12:   The compensation, γγγγ, is an interpretation of the environment’s 

evaluation by the CLA. 

Most reinforcement learning systems just translate the evaluation directly into the 

reinforcement, but this is not the case in a CLS. Consider two people playing chess. If 

one is a young adult who has never played before, she is unlikely to be upset about losing 

her first game, nor is she likely to take her first win as a sign of mastery of the game. On 

the other hand, if her opponent is a chess master, he is not likely to take too seriously any 

wins against a novice, but would react very strongly to a deafeat by one. In the same way, 

a CLA can also adjust the impact of evaluations based on some internal function. 

Compensation policies can be very flexible and vary with a number of factors, such 

as experience and collection length. That said, unless researchers are specifically 
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interested in the effects of the compensation policy on learning (Heckman 2004), the 

compensation policy is usually fixed on one that seems to maximize learning during 

operating point pilots. 

Defintion 13:  The compensation policy is fixed.  

2.5.7 Update 

The compensation policy interprets the evaluation from the environment for the CLA. 

The update function then takes the compensation, γ , and translates it into a numeric value 

that can be applied to the CLA’s memory. The result of the update function is the update, 

υ, which is the amount that the memory elements in the history are to be changed.  

Although the update is usually uniformly distributed over all the elements in the 

history, it can vary over the collection length. For example, the most recent events could 

be considered to be more important and therefore receive more of the update. Once the 

update has been applied to the weight matrix, the counts are incremented once for each 

time a stimulus/response pair appeared in the history. Then the history is cleared and the 

CLA is ready to handle another stimulus. 

2.5.8 State Transition Matrix (STM)  

The memory of a CLA exists in the State Transition Matrix (STM). The STM is a 

matrix which contains the knowledge about the correct mapping of inputs to outputs. The 

weights accumulate in the weight matrix over time as learning progesses. The STM can 

consist of more than one matrix for the purposes of computing the necessary statstics, but 

at a minimum there must exist one matrix, called the weight matrix. The weight matrix is 

the core knowledge matrix, containing numerical values which correspond to the strength 

between input/output pairs. Figure 2 shows a weight matrix for a hypothetical CLA.  
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Defintion 14:  The State Transition Matrix  (STM) is the knowledge matix that 

maps the input domain into the output range.  

For the purposes of clarity, it is necessary to distinguish between the elements in the 

STM, which are stored permanently, and the information being passed between the 

environment and the CLA. The elements in the stimulus domain are called stimulants (φ) 

and the input elements from the environment are called stimuli. The elements in the 

response range are called respondents (ω) and the output elements from the CLA to the 

environment are called responses. 

 

Defintion 15:  a stimulant  is a permanent element in the stimulus domain of the 

STM. 

Figure 2: State Transition Matrix (STM) The STM contains the knowledge about all stimulus/response 

pairs. The stimulus domain, Φ, represents all the stimuli that have been encountered by the CLA. The 

response range, Ω, is usually given at instantiation 
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Defintion 16:  a stimulus is an input from the environment to the CLA. 

Defintion 17:  a respondent is a permanent element in the response range of an 

STM.  

Defintion 18:   a response is an output element passed from the CLA to the 

environment. 

Initially, all weights are set to a baseline number (usually zero or one).  The weights 

are changed periodically according to the update policy as the responses are evaluated by 

the environment. For certain probability measures, it is useful to also use a count matrix 

which keeps track of the number of times a given stimulus/response pair was used.  

2.5.9 Response Selection  

As the weight matrix becomes populated, useful probabilities can be computed and 

used as the basis for choosing the next response. In order to choose a respondent to a 

given stimulant, the STM must be provided with a selection policy.  

Defintion 19:  A selection policy dictates how respondents are selected for a 

given stimulant.  

Just as with the evaluation, compensation, and update policies, the selection policy 

may be fixed or varied over time and circumstance. There is no one uniform selection 

policy for CLS. Although there is no hard rule about which selection policy to choose, 

Bayes’ Rule is often chosen as a default because, given independent classes 

(respondents), there exists no better classifier (Mitchell 1997). However, other options to 

consider are the maximum likelihood or a stochastic approach. In this research, maximum 

likelihood is the statistical basis of the clasifier. 

It is not enough to simply choose the respondant with the largest probability. Some 

statistical tests must be used to decide if the largest probability is in fact significantly 
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larger than the others. This is generally done by using the standard difference of two 

proportions to calculate the confidence that the largest probabilty is different than the 

other probabilities (the reject confidence) and then to calculate the confidence that the 

largest probability is different from the second largest probability (the tie confidence).  

Defintion 20:  The reject confidence is the confidence that, for a given 

stimulant, it is possible to reject the hypothesis that there is no 

difference between the largest posterior probability and the 

apriori probability. 

Defintion 21:  The tie confidence is the confidence that, for a given stimulant, 

the hypothesis that there is no difference between the largest 

posterior probability and the second largest posterior probability 

can be rejected.  

If the reject and tie confidences are sufficiently high, then it is possible to consider the 

acceptance of the hypothesis that the largest posterior probability is significantly larger  

the other probabilities and that the associated respondent should be chosen.  

Thresholds must be set in the selection policy to decide at what confidence level to 

stop exploring the response range and start exploiting the knowledge about a given 

stimulant/respondent pair. If the rejection confidence is not above the set threshold, then 

a random choice is made from all the possible respondents. If the reject confidence is 

high enough, but the tie confidence is not, then a random choice is made between the 

primary and secondary posterior probabilities. If the reject and tie confidences are above 

their respective thresholds, then the respondent with the highest posterior probability is 

chosen.  
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Recall that these confidences are all calculated using the standard difference of two 

proportions. The standard difference of two proportions assumes that the probabilities for 

a stimulant are normally distributed. This may or may not be the case, but it is an 

assumption must be made in order to calculate a confidence.  

Assumption 03:  the posterior probabilities of all stimulants are normally 

distributed. 

Once a respondent is chosen, a response is generated and passed to the environment. 

If appropriate, the response may change the environment’s state. Once the environment 

receives a response from the CLA, it sends back either an evaluation or another stimulus. 

2.6 Applications of Collective Learning Systems  

Collective Learning Systems are used to study different aspects of learning behavior 

(Armstrong & Bock 2005, Heckman 2004) in on-line learning situations. However, CLS 

can also be used for presupervised learning, classification without the algedonic cycle of 

learning. ALISA, a powerful tool for image and video processing that uses presupervised 

learning, was developed by Peter Bock (Bock 1998). In ALISA, the CLA is shown 

several examples of correct or preclassified stimulus/response pairs, so there is no need 

for a weight matrix. If all the examples are correct, then only the counts need to be 

recorded to calculate to necessary statistics.  

Defintion 22:  This research does not consider presupervised learning scenarios.  

2.7 Maximum Likelihood 

As has been discussed in earlier sections, most problems faced by a CLS do not meet 

the criteria for Bayes' Rule to provide optimal results, which requires that all classes 
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(respondents) must be disjoint and exhaustive. The degree to which classes are not 

disjoint may be partially inferred from column-vector distributions for the feature vectors 

(stimulants) in the stimulus domain. If a stimulant can significantly trigger more than one 

respondent, then these respondents cannot be completely disjoint.   

Most interesting classification problems specify classes that are patently and 

knowingly not disjoint. Consider the examples of lists of classes presented in Table 1, 

which are even intuitively far from disjoint, because they share significant features in 

common. 

Table 1: Non-disjoint Classes. Rocks eventually become sand, words may belong to more than 
one part of speech, and mental health disorders often share many of the same symptoms. 

Problem Domain Possible Classes 

pixels in images of outdoor 

scenes 

{rock, sand, ice, water, clouds, sky, grass, 

deciduous trees, evergreens, dirt, flowers, snow, 

rabbits, etc.} 

words with multiple meanings, 

such as “drive, father, gold” 

{noun, verb, adjective, etc.} 

mental health disorders {depression, bipolar disorder, hypomania, 

anorexia, anxiety, phobias, etc.} 

Given the possible and frequent shortcomings of Bayesian selection, it seems prudent 

to find another policy for response selection. Maximum Likelihood Estimation is a 

method developed by R.A. Fischer in 1950 (Fischer 1950). Its main purpose was to 

estimate the unknown parameters of a probability density function, PDF, that were most 

likely to have produced a given set of observed values. A concise definition of such 

classifiers comes from the Canada Centre for Remote Sensing: 
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Defintion 23:  Maximum Likelihood Estimation (MLE)  is “a statistical 

decision rule that examines the probability function of a 

[stimulus] for each of the classes [responses], and assigns the 

[stimulus] to the class [response] with the highest probability.” 

Maximum Likelihood classifiers are commonly used to analyze images of common 

scenes on our planet, often acquired from airborne or spaceborne platforms (Short 2006). 

Bayesian classifiers perform very poorly in this context, as shown in the examples listed 

in Table 1. Classes found in natural scenes are rarely disjoint, often having very large 

intersections in feature space, which implies that Bayes’ rule will not perform anywhere 

near its optimal capability.  
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2.8 Primary Research Objective 

After investigating five major areas of related work: psychological theories of child 

development, mathematical and statistical approaches, applications of child development 

theories to machine learning paradigms, reinforcement learning, and Collective Learning 

Systems, it is now possible to state a primary research objective.  

The primary objective of this research is to develop and assess the effectiveness of a 

new selection policy for a CLA and the effect that the new policy has on the CLA’s 

learning and behavior, subject to the following constraints: 

• The new selection policy must not require any feature analysis or comparison;  

• Psychological theories of early learning provide a valid basis for developing a 
new selection policy;  

• The CLS uses invariant evaluation, compensation, and update functions;  

• Performance is measured on a simple solitaire game and then extended to a 
few representative applications;  

• The CLA has a fixed response range (number of classes). 
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CHAPTER 3: SOLUTION METHOD 
 

 

 

 

 

 

3.1 Introduction to Solution Method 

As stated at the end of the previous chapter, the objective of this research was to 

develop and assess the effectiveness of a new selection policy for a CLA and the effect 

that the new policy has on the CLA’s learning and behavior, subject to the following 

constraints: 

• The new selection policy must not require any feature analysis or comparison;  

• Psychological theories of early learning provide a valid basis for developing a new 

selection policy;  

• The CLS uses invariant evaluation, compensation, and update functions;  

• Performance is measured on a simple solitaire game and then extended to a few 

representative applications;  

• The CLA has a fixed response range (number of classes). 

This chapter presents the details of the solution that was hypothesized to achieve this 

objective, as well as the details of the design of the goals and experiments necessary to 

accomplish in order to validate the research objective.  
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3.2 Tactic-Based Learning  

The mechanism is called Tactic-Based Learning (TBL). The main idea behind TBL 

is to bias the CLA in favor of solutions which it has already discovered to be effective. In 

order to do this, a CLA behaves exactly as it would without TBL until one stimulant-

respondent pair emerges as a statistically significant and effective solution. At that point, 

the respondent becomes a tactic and all other stimulants select the tactic response, 

becoming a follower of the tactic. Each follower stimulant measures the effectiveness of 

the tactic for itself and remains a follower of the tactic if it is effective or abandons the 

tactic very quickly if it does not prove to be effective. In order to avoid becoming stuck in 

local maxima, when follower stimulants become somewhat confident, they abandon their 

tactics. When a follower stimulant abandons its tactic, it becomes an independent 

stimulant. An independent stimulant either becomes confident in a respondent, becoming 

a supporter of a tactic, or it loses confidence and reverts to follower status.  

This is only a brief overview of the mechanism, but the general idea is to direct 

stimulants toward respondents that are known to be effective for other stimulants. By 

forcing stimulants to stay with effective tactics for some period of time, the CLA is 

biased towards an effective solution, but by allowing for some exploration later, the CLA 

avoids becoming stuck in suboptimal solutions.  

3.2.1 Life Cycle of a Stimulant 

A stimulant in a CLA that employs TBL assumes one of four roles at any given 

moment: seeker, follower, independent, or supporter. The transitions between these 

roles are regulated by two factors: the existence of tactics and the selection confidence of 

the stimulant. Figure 3 shows the life cycle of a hypothetical stimulant. 
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Figure 3: The Life Cycle of a Stimulant, φφφφ.  (1) The stimulant, φ, is encountered for the first time. In this example, 

there are not yet any tactics available in the STM, so φ is a seeker. (2) The first tactic appears in the STM and φ 

becomes a follower of it. (3) The first tactic is not effective, so φ abandons it and returns to being a seeker stimulant. 

(4) A second tactic appears in the STM and φ becomes a follower of this new tactic. (5) The stimulant’s selection 

confidence quickly reaches the independence threshold. φ becomes independent and explores its response range. (6) 

φ does not become confident in a respondent andφ’s selection confidence drops below the dependence threshold, 

causing φ to become follower again of its most effective tactic. (7) φ recovers its selection confidence and becomes 

an independent stimulant again. (8) φ has become confident enough to become a supporter of its own confident 

respondent. If this respondent is not already a tactic, a new tactic is available to other stimulants in the STM. (9) φ 

loses confidence and withdraws its support from its confident respondent. If φ was the only stimulant supporting 

that respondent as a tactic, the tactic is no longer available to other stimulants. (10) Once again, φ supports its 

confident respondent. This time φ  remains confident.  
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Postulate 01:  The selection confidence of a stimulant is the minimum of its tie 

and reject confidences (worst-case assumption). 

When there are no tactics available, then all stimulants are seekers. When tactics 

exist, but none have proven effective for a given stimulant, then that stimulant is a seeker 

stimulant and follows the Standard selection policy. 

Defintion 24:  A seeker stimulant has no effective tactic and uses the Standard 

selection policy. 

Defintion 25:  A tactic is a respondent that follower stimulants may select. 

In the beginning of the learning process, all stimulants are seekers, so how does the 

first tactic arise? The first tactic comes into existence when a stimulant meets the 

following criteria: its selection confidence is above the support threshold and it has only 

one primary respondent. When a stimulant becomes confident enough to support a 

tactic, it is called a supporter stimulant. 

Defintion 26:  The primary respondent for a stimulant is a respondent with the 

largest weight. 

Defintion 27:  The secondary respondent for a stimulant is a respondent with the 

second largest weight.  

Defintion 28:  A supporter stimulant is a stimulant whose primary respondent is 

a tactic.  

Defintion 29:  The support threshold of a CLA specifies the minimum 

selection confidence required of a stimulant to support a tactic. 
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It is possible for a confident stimulant to lose confidence in its respondent. This 

happens frequently when the statistics in the STM are changing rapidly during the early 

stages of learning. When a confident stimulant’s selection confidence drops below the 

withdrawal threshold, the stimulant withdraws its support from the tactic respondent 

and becomes an independent stimulant.  A supporter stimulant may also withdraw its 

support from a tactic even if its selection confidence has not dropped below the 

withdrawal threshold if it acquires more than one primary respondent. 

Defintion 30:  The withdrawal threshold  of a CLA specifies the minimum 

selection confidence of a supporter stimulant required to maintain 

support for a tactic. (By implication, the withdrawal threshold 

cannot be higher than the support threshold.) 

Defintion 31:  A follower stimulant is a stimulant that uses a tactic to guide its 

response selection. 

At the moment the first tactic is supported in the STM, all stimulants except the first 

supporter become followers of the tactic. A follower stimulant stays with the first tactic 

as long as the tactic proves effective. If the tactic is not effective for a follower stimulant, 

the stimulant ceases to be a follower of the tactic and reverts to being a seeker stimulant. 

The effectiveness of a tactic, known as its potency, ϕ,  is the average compensation 

that the stimulant has received while using a particular tactic. If the potency of a 

stimulant’s tactic drops below a specified threshold, then the tactic is deemed ineffective, 

and the stimulant abandons the tactic. 
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Postulate 02:  A tactic’s potency,ϕ, is the average compensation that a follower 

stimulant has received while being a follower of the tactic.  

If a tactic proves effective for a follower stimulant, the stimulant stays with its tactic 

until the stimulant’s selection confidence is greater than the independence threshold and 

becomes an independent stimulant. 

Defintion 32:  An independent stimulant is a stimulant that has an effective 

tactic, but follows the Standard selection policy.  

Defintion 33:  The independence threshold of a CLA is the minimum selection 

confidence required for a follower stimulant become independent. 

(By implication, the independence threshold cannot be higher 

than the support threshold.) 

An independent stimulant’s selection confidence may be higher than the support 

threshold if the stimulant has more than one primary respondent. A stimulant may have a 

selection confidence higher than the independence threshold, but still be considered a 

seeker stimulant if it does not yet have at least one effective tactic. The independence 

threshold must always be less than or equal to the support threshold.  

An independent stimulant uses the Standard selection policy and explores the full 

response range. There is an important reason for this period of exploration to exist: a 

tactic may provide a suboptimal solution. Certainly, a suboptimal solution is better than a 

completely incorrect one, but one of the criteria of the research objective is that the 

solution must avoid settling in local maxima.  
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If an independent stimulant’s selection confidence drops below the dependence 

threshold, then the independent stimulant returns to being a follower stimulant. The new 

follower stimulant returns to using its effective local tactic unless that tactic no longer 

exists. If its previous tactic no longer exists, the stimulant selects a new tactic from the 

global list. If no tactics are available in the STM, then the stimulant becomes a seeker 

stimulant.   

Defintion 34:  The dependence threshold of a CLA is the minimum selection 

confidence an independent stimulant must maintain to remain 

independent. (By implication, the dependence threshold cannot be 

higher than the independence threshold.) 

3.2.2 Life cycle of Tactics  

As has been described in Section 2.5, a Collective Learning Automaton (CLA) is a 

statistical learning device whose behavior is defined by a State Transition Matrix (STM) 

whose domain is populated by stimulants and whose range is populated by respondents. 

The elements of the STM are the weights (probabilities) that map each stimulant to one 

or more of the respondents. These weights are acquired through interaction with a 

supervising Environment that periodically issues evaluations of the CLA’s behavior, 

which the CLA uses to update the weights in the STM.  

In a TBL-CLA, all stimulants begin without being allied with any of the available 

respondents; however, eventually the confidence that one of the respondents is a valid 

response for an individual stimulant may exceed the support threshold. Such a 

respondent then becomes a tactic respondent, or simply tactic. Once a tactic exists in 

the STM, other stimulants may become followers of that tactic. Followers of a tactic 
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always select the tactic response instead of following the Standard selection policy (see 

Section 3.3.6).  

Every follower stimulant keeps track of the local potency. Each tactic also keeps 

track of its overall effectiveness, or global potency, for all of its followers past and 

present.  

Postulate 03:  The local potency, ϕl, of a tactic is a measure of effectiveness of a 

tactic for an individual follower stimulant and is calculated as 

follows: 

Equation 1          
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 Where nl is the number of times that the tactic has been used and 

γi is compensation value received. 

Postulate 04:  The global potency, ϕg, of a tactic is a measure of effectiveness of 

a tactic for stimulants that have followed the tactic and is 

calculated as follows: 

 Equation 2 

�
 �  � ��
�


	


��
 

 Where ng is the number of times that the tactic has been used and 

γi is compensation value received. 
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The local potency is used by a follower to decide if it should continue to follow a 

specific tactic. If the local potency falls blow the minimum local potency, the follower 

abandons the tactic. The global potency is used to rank tactics in the STM. When a 

stimulant is choosing a tactic, it starts with the most globally potent tactic and works its 

way down the list of tactics until the stimulant discovers a tactic that proves to be locally 

potent.  

Postulate 05:  The minimum local potency of a tactic is 1, the minimum non-

penalty. 

A respondent remains a tactic until it no longer has any supporters. When all 

supporters of a tactic withdraw their support, a tactic resigns and is removed from the 

global list of tactics and any local tactic lists kept by stimulants. Note that when a tactic 

resigns, it might still have followers which must find other tactics or return to being 

seekers. 

Postulate 06:  A tactic resigns when it no longer has any supporters. After a 

tactic resigns, it is no longer available globally or locally for any 

stimulants to follow.   

Tactic resignation occurs most frequently during the early stages of learning when 

stimulant selection confidences are changing rapidly. By allowing tactics to resign, 

Tactic-Based Learning attempts to avoid biasing the CLA in unproductive directions.  

Once a tactic has resigned, it may be reinstated by any stimulant. There is no required 

waiting time between resignation and reinstatement. When a tactic is reinstated all 

potency values are reset to the default initial values. Followers must relearn the local 
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potencies of a reinstated tactic and the reinstated tactic must establish its global potency 

again. 

The preceding discussion described the roles of stimulants and respondents in the 

learning process. The role that a stimulant can be in at a given point in time is dictated by 

the presence, absence, or strength of the tactics that exist (or do not exist) in the CLA. It 

is necessary, however, to explain in more detail how tactics come into being, are adopted 

and rejected by individual stimulants, and the important differences between a global and 

a local tactic. In order to accomplish this, a series of sequential frames are presented 

below. Each frame has a number and all explanations of the process from frame to frame 

are given in the text after each frame.   

This sequence of frames starts when there are no tactics in the STM and demonstrates 

how tactics appears and disappear in the CLA. Since this illustration focuses on the rules 

that govern the process of the instantiation and resignation of tactics, no weights or 

statistics are provided for individual stimulants. 
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Frame 1 shows an STM before any tactics are present. Although the first stimulant, φ1 is the only 

stimulant shown, the ellipses in the domain imply that much of the rest of the STM is in use, i.e. 

there are already many stimulants. The absence of any tactics in the CLA implies that φ1 has not 

yet crossed the support threshold. 

Frame 2 shows the CLA after φ1 has crosses the support threshold. Stimulant φ1 supports ω1 as a 
tactic. When this happens, ω1 is placed on the global tactics list with a global potency of 1.00. In 
this and subsequent frames, the global tactics consist of the tactic name and its current global 
potency. The line that extends down from the global tactic points to the list of stimulants that 
support the tactic, i.e. the supporters. As stimulants support or withdraw their support from tactics, 
they are added or removed from a global tactic’s list of supporters.

Frame 1 

Frame 2 
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 Later, other stimulants become followers. Stimulant φ300 is shown as a follower of ω1. When a 
stimulant follows a tactic, the stimulant establishes its own list of local tactics.  

 

The local potency of a tactic reflects the average compensation that the stimulant has received 
while being a follower of the tactic. In the case of φ300, its tactic has been effective and its local 
potency is at 1.05, which is above the minimum potency threshold of 1.00. Every time a stimulant 
uses a tactic, it updates its local potency and the global potency. Note that the global potency has 
changed from 1.00 to 1.01. This means that there are other stimulants that are followers of ω1. If 
φ300 were the only stimulant following ω1, the global potency would also be 1.05.  

Frame 3 

Frame 4 
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As stimulant φ300 becomes more confident, it becomes independent and stops following its local 
tactic, even though the local tactic is still potent. Stimulant φ300 takes this opportunity to explore its 
response range which helps avoid local maxima. When a stimulant is independent, it retains the 
list of local tactics even though it is not currently following a tactic.  

After a period of independence, φ300 becomes confident enough to support its own primary 
respondent as a tactic. Note that φ300 has come to support a different respondent than it 
successful tactic. When a new tactic is supported, it is added to the list of global tactics in order of 
global potency. All new tactics start with a potency of 1.00, the minimum potency. Because ω3’s 
potency is less than that of ω1, it is placed second on the global tactics list. Note that even though 
φ300 is now a supporter of a tactic, it retains its local tactics list.  

Frame 5 

Frame 6 
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 Frame 7 shows the CLA at a point in time farther along in the learning process. Another global 
tactic has been added and other stimulants which are not pictured have also emerged as 
supporters. Also all the global tactics’ potencies have changed slightly. Note that more than one 
stimulant can support the same tactic. The global potency is not calculated based on the number 
of supporting stimulants, but it is important to track supporters because a tactic must resign if it no 
longer has any supporters. 

Later, three new stimulants appear in the STM. All stimulants are seekers when they first appear; 
however, they immediately seek a tactic the very first time they are called upon to choose a 
respondent. 

  

Frame 7 

Frame 8 
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When the seekers are called upon to choose a respondent, they seek out a tactic. Since ω1 is the 
most potent tactic on the global tactic list, all three become followers of it.  

 

 

 As time goes on, the new stimulants adjust their local potencies. In this example φi and φk have 
tactics whose local potencies have dropped below the minimum potency threshold. On the other 
hand, φj has a tactic that has become more potent.  

 

Frame 9 

Frame 10 



 

 60  

Both φi and φk now follow the next tactic from the global tactic list. All new local tactics start with a 

potency of 1.00. This allows for a quick move away from an ineffective tactic.  

 

 In this case, φk does not find its second tactic effective and so seeks another tactic the next time 
it is called on to choose a respondent.  

 

Frame 12 
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The next time φk chooses a respondent, it checks the list of global tactics and finds the only 

other tactic that it has not yet tried and becomes a follower of ω6. Note that φk retains its list of 

previously used tactics.  

 

In this example, ω6 is not an effective tactic for φk.  

 

Frame 13 

Frame 14 
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Since there are currently no more tactics available in the global tactic list, φk becomes a seeker 
stimulant.  

In the early stages of learning, it is sometimes the case that a supporter loses confidence and 
withdraws its support from the respondent it had supported as a tactic. When this happens, the 
supporter stimulant is removed from the global tactic’s list of supporters. 

Frame 15 

Frame 16 
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When a global tactic no longer has any supporters, it resigns from the global tactic list.  

Once a supporter stimulant has withdrawn it support, it returns to independent status. In this 
example, when φk withdrew its support of ω3, it caused ω3 to resign from the global tactic list. 
When a tactic resigns, it can no longer be used as a tactic by any stimulants and must be 
removed from all local tactic lists.  

 

 

  

Frame 17 

Frame 18 
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Now that ω6 has been removed from the local tactic lists, stimulant φi must find another tactic. It 
does not consider ω1 because that has already been proven an ineffective tactic.  

 

Stimulant φi becomes a follower of ω6. 

 

  

Frame 19 

Frame 20 
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As learning progresses, it is quite possible for a stimulant to withdraw support from a tactic and 
later regain confidence and support the same tactic again. 

 

Note that in Frame 12 the stimulant φk found the tactic ω3 ineffective. When ω3 resigned from the 
global tactic list, it was also removed from any and all local tactic lists. Now that ω3 appears again 
as a tactic, φk no longer has a record that it has tried it before. This policy attempts to balance the 
fact that some tactics are unfairly eliminated from local tactic lists because they have been 
evaluated in histories which contain other incorrect responses. This counteracts some of the 
unfortunate side effects of longer collection lengths. 

Frame 21 

Frame 22 
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Occasionally, stimulants may find that a previously ineffective tactic is actually quite effective. 
This is because all local tactics start with a local potency of 1.00, the minimum potency. A new 
follower may fall in a history that is negatively compensated. Early compensations have a 
stronger effect on the local potency than later ones which can cause a follower to abandon its 
tactic even though it might actually be effective.   

Frame 23 
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3.3 The TBL Algorithm and Data Structures  

This section presents the TBL algorithm and necessary data structures to implement it 

in a CLA. The complete source code is provided in the Digital Appendix.  

Tactic-Based Learning is implemented in a CLA, and so it is necessary to include 

some of the algorithms connected with CLS theory, although very little of CLS theory 

has been altered. It is easier to discuss the algorithm in terms of modules that represent 

the different parts of a CLS. In this section, ModuleNames are italicized. The flow of 

control is outlined first then the algorithms are presented in pseudo-code. In Sections 

3.3.3 through 3.3.11, the algorithms and data structures are discussed in more detail. 

Section 3.3.12 presents a brief description of the time complexity implications of TBL. 

All references in this section to the Standard CLS algorithms are from (Bock 1993).  

3.3.1 Flow of Control 

The Manager gathers parameters from the human user, loads the correct TruthTable, 

generates the appropriate random stimuli, generates the fixed test set, and instantiates the 

CLA and STM with the appropriate parameters. Once everything is initialized, the 

Manager passes the stimuli, Responses, and evaluations between the Environment and 

the CLA. The Manager handles the training and testing of the CLA and records all the 

data that is used to calculate the preliminary results and conclusions. 

The Environment, once initialized with a TruthTable, is responsible for periodically 

evaluating the responses generated by the CLA. The Environment does this using its 

evaluation policy, ξ. The evaluation policy may vary depending on the TruthTable.  

The CLA receives random stimuli from the Manager and sends the stimuli to the 

STM. The STM returns Responses to the CLA, which sends the responses back to the 

Manager. When the Manager sends the CLA an evaluation, the CLA interprets the 
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evaluation using its compensation policy to generate a compensation value, γγγγ. The CLA 

then passes the compensation and the history of Responses to the STM.  

The bulk of the TBL algorithm is implemented in the STM; however, the STM can 

handle both TBL and non-TBL learning paradigms. The STM receives stimuli from the 

CLA and sends back Responses. The STM stores all the Stimulants and maintains their 

learning statistics and calculates their reject, tie, and selection confidences. If the STM is 

using the TBL algorithm for selection respondents, it also stores the global tactic list.  

Some of the modules function largely as data structures. These modules are 

Stimulant, Response, TruthTable, and Tactic. These modules are mentioned in the 

pseudo-code, but they are described in further detail in Sections 3.3.8 through 3.3.11. 

3.3.2 Pseudo-code 
Main()  

 GetUsersInputs( RETURN userInputs {seed, matchLength, …})  
 GenerateRandomStimuli( SEND seed; RETURN stimuli)  
 FOR pre-selected states of the  truthTable 
  InitializeTruthTable(SEND stimuli; RETURN truthTable)   

  InstantiateCLA( SEND userInputs; RETURN initializedCLA)  

  TrainCLA( SEND initializedCLA, userInputs, truthTable, stimuli;  
     RETURN trainedCLA) 

  MeasurePerformance( SEND trainedCLA; RETURN performanceMeasures) 
 END FOR 
END Main 
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TrainCLA( SEND initializedCLA, userInputs, truthTable, stimuli; RETURN trainedCLA)  

 FOR contest k = 1 to matchLength  

  EmptyHistory(RETURN history)  

  FOR 1 to collectionLength 

   GetResponse( SEND stimulusk; RETURN responsek) 

   AppendHistory(SEND stimulusk, responsek, history)  

  END FOR 

  CalculateEvaluation( SEND history, RETURN evaluation) 

  EvaluateCLA( SEND evaluation, history) 
 END FOR 
END TrainCLA 

 

GetResponse ( RECIEVE stimulus; RETURN response)  

 IF stimulus is not already a stimulant  in STM  THEN 

  CreateStimulant( SEND stimulus, RETURN newStimulant) 
  AddStimulant( SEND newStimulant) 
  extent = extent + 1    
  IF TBL-CLA  THEN 

   TBL( SEND newStimulant; RETURN response) 

   RETURN response  
  ELSE [Standard-CLA ] 

   Random( SEND newStimulant; RETURN any respondent) 
   CreateResponse( SEND newStimulant, respondent; RETURN response) 

   RETURN response 
  END IF 

 ELSE [stimulus is already  a stimulant in STM ] 

  GetStimulant( SEND stimulus; RETURN stimulant) 
  RecalculatePosteriorProbabilities ( SEND stimulant) 
  RecalculateConfidences ( SEND stimulant) 
  IF Standard-CLA THEN  

   IF stimulant’s rejectConfidence < rejectThreshold THEN 

    Random( SEND stimulant, RETURN any respondent) 
    CreateResponse( SEND stimulant, respondent; RETURN response) 

    RETURN response 

   ELSE [stimulant’s rejectConfidence ≥ rejectThreshold] 

    IF stimulant’s tieConfidence < tieThreshold THEN           
     Random( SEND stimulant;  
        RETURN primaryRespondent OR secondaryRespondent) 
     CreateResponse( SEND stimulant, respondent; RETURN response) 

     RETURN response 

    ELSE [stimulant has a confident respondent ] 

     CreateResponse( SEND stimulant, primaryRespondent;  
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           RETURN response) 

     RETURN response 
    END IF 
   END IF 
  ELSE [TBL-CLA] 

   IF stimulant is confident  THEN  
    CreateResponse( SEND stimulant, primaryRespondent;  
          RETURN response) 

    RETURN response  
   ELSE  

    IF stimulant is an independent stimulant  THEN 

     IF stimulant’s rejectConfidence < rejectThreshold THEN 

      Random( SEND stimulant, RETURN any respondent) 
      CreateResponse( SEND stimulant, respondent;  
               RETURN response) 

      RETURN response 

     ELSE [stimulant is tied ] 

      Random( SEND phi,  
         RETURN primaryRespondent OR secondaryRespondent) 
      CreateResponse( SEND phi, respondent; RETURN response) 

      RETURN response 
      END IF  

    ELSE [stimulant is seeker  OR a follower ] 

     TBL( SEND stimulant, RETURN response)  

     RETURN response 
    END IF 
   END IF 
  END IF 
 END IF 
END GetResponse 
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TBL( RECEIVE stimulant, RETURN response) 

 IF stimulant has no local tactics  THEN 
  IF CLA has no global tactics  THEN 

   Random( SEND stimulant; RETURN any respondent) 
   CreateResponse( SEND stimulant, respondent; RETURN response) 

   RETURN response  
  ELSE [CLA has global tactics ] 

   GetMostPotentTactic( RETURN tactic) 

   AddLocalTactic( SEND tactic) 

   ResetTactic( SEND initialValues) 

   CreateResponse( SEND stimulant, tacticRespondent; RETURN response) 

   RETURN response 
  END IF 

 ELSE [stimulant has local tactics ] 

  IF stimulant has  an effective local tactic  THEN 

   CreateResponse( SEND stimulant, tacticRespondent; RETURN response) 

   RETURN response 

  ELSE [stimulant does not have an effective local tactic ]  
   IF there are no new global tactics  THEN 

    Random( SEND stimulant; RETURN any respondent) 
    CreateResponse( SEND stimulant, respondent; RETURN response) 

    RETURN response 
   ELSE [there is a new global tactic ]  

    GetMostPotentTactic( RETURN tactic) 

    AddLocalTactic( SEND tactic) 

    ResetTactic( SEND initialValues) 

    CreateResponse( SEND stimulant, tacticRespondent;  
          RETURN response) 

    RETURN response 
   END IF 
  END IF 
 END IF  
END TBL 
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RecalculateConfidences(RECEIVE stimulant)  

 CalculateTieConfidence( SEND stimulant)  
 CalculateRejectConfidence( SEND stimulant)   
 IF TBL-CLA THEN 

  CreateTactic( SEND stimulant’s primaryRespondents, RETURN tempM)  

  IF selectionConfidence ≥ supportThreshold   

   AND stimulant has only one primaryRespondent THEN 

   SetIndependentStatus( SEND stimulant, FALSE) 

   SetSupporterStatus( SEND stimulant, TRUE) 

   AddSupporter( SEND stimulant, tempM) 

   IF tempM is not on the global tactic list  THEN 

    AddGlobalTactic( SEND tempM) 
   END IF 

  ELSE IF stimulant is a supporter AND  
   (selectionConfidence < withdrawalThreshold OR 
    stimulant has more than one primaryRespondent) THEN 

   SetSupporterStatus( SEND stimulant, FALSE)  

   IF selectionConfidence ≥ independenceThreshold AND  
    stimulant has at least 1 useful tactic  THEN 

    SetIndependentStatus( SEND stimulant, TRUE) 
   ELSE  
    SetIndependentStatus( SEND stimulant, FALSE) 
   END IF  

   RemoveSupporter( SEND stimulant, tempM)  

   IF tempM has no supporters  THEN 

    RemoveGlobalTactic( SEND tempM) 

    RemoveLocalTactic( SEND tempM, all stimulants in domain) 
   END IF 

  ELSE IF stimulant is a supporter AND stimulant's supported tactic != tempM THEN 
   RemoveSupporter( SEND stimulant, previousTactic) 

   AddSupporter( SEND stimulant, tempM) 

   IF previousTactic has no supporters  THEN 

    RemoveGlobalTactic( SEND previousTactic) 

    RemoveLocalTactic( SEND previousTactic, all stimulants in domain) 
   END IF 

  ELSE IF stimulant is not a supporter AND stimulant is not a independent AND 
   stimulant has at least 1 useful tactic  AND  

   selectionConfidence ≥ independenceThreshold THEN  

   SetIndependentStatus( SEND stimulant, TRUE) 

   SetSupporterStatus( SEND stimulant, FALSE) 

  ELSE IF stimulant is independent AND  
   selectionConfidence < dependenceThreshold THEN 
   SetIndependentStatus( SEND stimulant, FALSE) 
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   SetSupporterStatus( SEND stimulant, FALSE)  
  END IF 
 END IF 
END RecalculateConfidences 

 

CompensateCLA( RECEIVE evaluation, history) 

 confidentCount = 0 

 followerCount = 0 

 FOR every response in history 
  IF rejectConfidence ≥ rejectThreshold THEN 

   confidentCount = confidentCount + 1 

  ELSE IF response was follower THEN 

   followerCount = followerCount + 1  
  END IF 
 END FOR 

 expectedEvaluation = ( confidentCount + followerCount)/collectionLength 
 IF evaluation = 1 OR (evaluation > 0 AND evaluation > expectedEvaluation)  THEN 

  compensationConfident = 1 + 0.1( evaluation) 
  compensationOther = compensationConfident 
 ELSE IF evaluation > 0 AND evaluation = expectedEvaluation THEN 
  IF averageSelectionConfidence < compensationThreshold THEN 

   compensationConfident = 1 + 0.1( evaluation) 
   compensationOther = compensationConfident 
  ELSE    

   compensationConfident = 0.999 

   compensationOther = 0.975 
  END IF 

 ELSE IF evaluation > 0 AND evaluation < expectedEvaluation THEN 
  IF averageSelectionConfidence < compensationThreshold THEN 

   compensationConfident = 1 + 0.1( evaluation) 
   compensationOther = compensationConfident 
  ELSE    

   compensationConfident = 0.96 

   compensationOther = 0.98 
  END IF 

 ELSE [evaluation = 0] 
  compensationConfident = 0.85 

  compensationOther = 0.90 
 END IF 

 UpdateSTM( SEND compensationConfident, compensationOther, history) 
END CompensateCLA 

UpdateSTM (receive compensationConfident, compensationOther, history) 

 FOR every response in history 

  GetRespondent( SEND response, RETURN respondent) 
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  respondentCount = respondentCount + 1  
  IF tieConfidence AND rejectConfidence are at maximumValue THEN 

   compensation = 1 

  ELSE [tieConfidence OR rejectConfidence < maximumValue] 
   IF tieConfidence ≥ tieThreshold AND rejectConfidence ≥ rejectThreshold THEN 
    compensation = compensationConfident 
   ELSE [nextResponse not confident ] 

    compensation = compensationOther  
   END IF 
  END IF 

  newWeightrespondent = oldWeightrespondent( compensation)   

  IF TBL-CLA AND newResponse used a tactic  THEN 

   UpdateTacticPotency( SEND globalTactic, compensation) 

   UpdateTacticPotency( SEND localTactic, compensation) 
  END IF 
 END FOR 
END UpdateSTM 

 

UpdateTacticPotency( RECEIVE tactic, compensation) 

 potencycurrent = tacticPotency 

potencytemporary = potencycurrent( success + fail) + compensation 

 IF compensation ≥ minCompensation THEN 

  success = success + 1 
 ELSE 

  fail = fail + 1 
 END IF  

tacticPotency = potencycurrent ÷ ( success + fail)  

END UpdateTacticPotency  

 

3.3.3 Environment 

The Environment’s main purpose is to evaluate the Responses produced by the STM. 

In order to provide an evaluation of the Responses, the Environment must be provided 

with the correct TruthTable. A TruthTable is given to the Environment by the Manager at 

the beginning of the game.  

The Environment does not have any significant data structures to discuss; however, it 

does have the evaluation policy, ξ. Because this research deals only with categorical 
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outputs, a CLA is evaluated based on the number of correct responses. The evaluation of 

a single Response has only two possible options: correct and incorrect. 

Postulate 07:  The evaluation policy for the game is the average evaluation for 

the collection length, 

    
 ./001.2

	  

  where rcorrect is the number of correct Responses and n is the 

total number of Responses. 

3.3.4 CLA 

The CLA module, like the Environment, does not have any significant data structures. 

It received stimuli from the Manager and passes them to the STM where a Response is 

generated. The CLA takes the Response from the STM and passes it back to the Manager. 

The main responsibility of the CLA is to interpret the evaluations that are handed down 

from the Environment through the Manager. The evaluations are interpreted using a 

compensation policy which generates a compensation value, γγγγ.  

Using Tactic-Based Learning allows the CLA to compensate stimulants differently. 

The compensation policy postulated in pseudo-code in Section 3.3.4 calculates an 

anticipated evaluation based on the number of confidence stimulants and the number of 

follower stimulants. It should be noted that the compensation policy is applicable, and 

indeed is applied, to both Standard and TBL-CLAs. The purpose of generating a more 

nuanced compensation policy is to help a TBL-CLA from settling into local maxima. 

This would be very easy for a TBL-CLA to do because it is more likely to receive more 

positive evaluations early on because of the stimulants that use tactics. At longer 
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collection lengths, it is possible for some incorrect follower stimulants to be positively 

evaluated because they are in histories with many other correct stimulants. This situation 

can also occur in a Standard-CLA, but in a TBL-CLA these incorrect stimulants are 

following tactics, and they continue to select the same respondent. In a Standard-CLA, a 

non-confident stimulant that chooses an incorrect respondent is not likely to make the 

same selection the next time because it is still selecting responses at random. 

Defintion 35:  A stimulant whose tie and reject confidences are greater than or 

equal to the tie and reject thresholds, respectively, generates a 

confident response.  

A generic compensation policy would simply scale the compensation with the 

evaluation. This is a good policy for a Standard-CLA because it rewards any correct 

responses that were made over the course of the history; however, when some stimulants 

are follower stimulants, problems can occur. In the early stages of learning, the TBL-

CLA performs very well and receives large amounts of positive compensation. This 

positive compensation strengthens the local potency of the tactics being used by follower 

stimulants. Some of the follower stimulants might be followers of tactics that are actually 

incorrect for them, but the stimulants receive some positive compensation in general 

because many other stimulants are correct. As follower stimulants of incorrect tactics 

become independent, they make mistakes and return to their incorrect tactic. Over time 

the counts behind the incorrect response get very large, which makes it very difficult for 

the stimulant to choose another respondent when it becomes independent. Once that 

happens, stimulants can become very confident in an incorrect response. By the time this 

happens, most of the other stimulants have been associated with their correct respondent 
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and the CLA never receives the maximum evaluation, but it is a good enough evaluation 

to reinforce the incorrect respondents along with the correct ones, leading the CLA to 

settle in a local maxima.  

The compensation policy in this research scales with the evaluation until the CLA 

becomes highly confident, on average. After that point, the compensation becomes much 

harsher and this change encourages the CLA to make corrections and helps avoid local 

maxima. The appropriate setting of the compensation threshold is determined by OP 

Pilots for the different experiments and is not a factor of this research, although informal 

observation suggests that its influence on learning behavior is a worthwhile research 

question. 

Defintion 36:  The compensation threshold, κγ, is a parameter in the 

compensation policy. When a CLA’s average selection 

confidence crosses this threshold, the compensation policy 

becomes more stringent. 
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Postulate 08:  The compensation policy for the unordered game generates the 

compensation value, γ, is as follows:  

   IF ξ = 1 OR (ξ > 0 AND ξ > ξanticipated ) THEN 
    γγγγconfident = 1 + 0.1(ξ) 

    γγγγother = γγγγconfident   
   ELSE IF ξ > 0 AND ξ = ξanticipated THEN 
    IF avgerageSelectionConfidence < κγ THEN 
     γγγγconfident = 1 + 0.1(ξ) 

     γγγγother = γγγγconfident  
    ELSE 
     γγγγconfident = 0.999 

     γγγγother = 0.975 
    END IF  
  ELSE IF ξ > 0 AND ξ < ξanticipated THEN 
   IF avgerageSelectionConfidence < κγ THEN 
     γγγγconfident = 1 + 0.1(ξ) 

     γγγγother = γγγγconfident  
    ELSE 
     γγγγconfident = 0.96 

     γγγγother = 0.98 
    END IF 
   ELSE 
    γγγγconfident = 0.85 

    γγγγother = 0.9 
   END IF  

 

3.3.5 STM 

The STM receives stimuli from the CLA and uses a selection policy to choose a 

respondent from which it generates a Response. The STM periodically receives a 

compensation value, γγγγ, and a history of Responses from the CLA. When the STM receives 

a compensation value, it uses its update policy to adjust the weights and statistics in the 
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Stimulants that make up the actual state transition matrix.  

If a CLA is using the TBL selection policy, then the STM also handles the TBL 

process by determining when a Stimulant has elected or abandoned a Tactic and when a 

Stimulant is ready to become independent. This is where most of the procedures involved 

in the TBL algorithm are located.  

The STM also has two data structures that are important to the algorithm: a list of all 

the stimulants and the list of global tactics.  

List stimulantDomain  

The stimulantDomain  is a list containing Stimulants. The stimulantDomain  

is dynamically allocated so that the STM can be scaled in size easily, but this is not a 

requirement of CLS theory.  

List globalTactics  

The globalTactics  list contains the global tactics. Stimulants in search of a new 

Tactic look to globalTactics  to ascertain if any tactics are available.  

The procedures GetResponse, TBL, RecalculateCondifences, and 

UpdateSTM all fall under the auspices of the STM module. Section 3.3.4 discusses how 

the STM selects a respondent to use in a Response using either the Standard selection 

policy or the TBL selection policy. Section 3.3.7 discusses how the STM incorporates a 

compensation value by using its update policy. 

3.3.6 Discussion of the selection policy algorithms 

One of the STM’s jobs is to apply a selection policy to a Stimulant and choose a 

respondent that becomes part of a Response. To generate a response for a stimulus, the 

STM first checks that the corresponding Stimulant exists in the STM. If it does not exist, a 
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new Stimulant is created and added to the stimulus domain. If the STM is using TBL and 

there are global tactics available, then the new Stimulant is assigned its first tactic and it 

selects that tactic respondent. If the STM is using the Standard selection policy, a random 

respondent is selected.  

If the STM is using the Standard selection policy and the stimulus corresponds to a 

known Stimulant, policy dictates that if the primary respondent is significant (i.e. if the 

tie and reject confidences are above their respective thresholds), the primary respondent 

is chosen and returned to the CLA. If the primary respondent and the secondary 

respondent are tied (i.e. if the reject confidence is greater than the reject threshold, but the 

tie confidence is not above the tie threshold), then the STM chooses randomly between 

the primary and secondary respondents. If there is no clear choice (i.e. neither the reject 

nor tie confidence is above its threshold), then the STM randomly chooses a respondent 

from among all the possible respondents.  

If the STM is using TBL and the stimulus corresponds to a known Stimulant, then the 

STM attempts to apply the TBL selection policy. If the Stimulant has no local tactics, then 

the STM checks the list of global tactics. If there are no global tactics, then the STM 

follows the Standard selection policy. If global tactics do exist, then the STM selects the 

global tactic with the highest global potency, makes a copy of it, adds the new tactic to 

the Stimulant’s local tactic list, and uses the tactic’s respondent to create a Response to 

return to the CLA.  

If the Stimulant exists in the STM and has local tactics, the STM searches for an 

effective local tactic. If an effective local tactic is available, the STM uses the local tactic 

respondent to create a Response to return to the CLA. If there is no effective local tactic, 

then the STM searches for a tactic in the global list that has not been tried by the current 
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Stimulant. If a new global tactic is available, it is added to the Stimulant’s list of local 

tactics and the STM uses the new tactic respondent to create a Respondent to return to the 

CLA. If there is no effective local tactic and no new global tactic, then the STM follows 

the Standard selection policy.  

When a CLA uses the TBL selection policy, the status of tactic respondents can 

change every time the confidence is recalculated. The confidence needs to be recalculated 

every time GetResponse is called. Instead of calculating the confidences for all 

stimulants after every call to UpdateSTM, individual Stimulants have their confidences 

recalculated one at a time as they are needed. This saves a great deal of execution time as 

the stimulus domain gets larger.  

The details of calculating the confidences are not presented in GetResponse 

because the calculations are the same whether or not the CLA uses TBL; however, if the 

CLA is using TBL, the status of a Stimulant (i.e. follower, independent, etc.) must be 

reconsidered every time the confidences are recalculated.  

A Stimulant may support a new Tactic to the global list of Tactics if the Stimulant is 

the first to become confident in a respondent which is not present on the global tactic list. 

The Stimulant becomes the Tactic’s first supporter. Once a Tactic has been added to the 

global list, it is available to all seeker Stimulants, that is, Stimulants without an effective 

tactic.  

As the weights and statistics change in the STM, a Stimulant may lose confidence in 

its respondent. When that happens, the Stimulant withdraws its support from the Tactic 

and the Stimulant returns to being either an independent Stimulant or a seeker Stimulant 

(this happens if the Stimulant does not have a previously effective local Tactic). 
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As Stimulants withdraw their support from a Tactic, it is possible that a Tactic could 

be left with no supporters at all. If this happens, the Tactic must resign. When a Tactic 

resigns, it removes itself from the global tactic list and all local tactic lists it was on, even 

if it was an effective Tactic for a certain follower Stimulant. If a Stimulant becomes 

confident in a former Tactic respondent, the respondent may be supported again as a 

Tactic.  

When a follower Stimulant’s selection confidence rises above the independence 

threshold, it becomes an independent Stimulant. Even though the Stimulant has an 

effective Tactic, it reverts to the Standard selection policy and explores the response 

range.  

Independent Stimulants are highly volatile. Some may become confident in a 

respondent and go on to support a Tactic. Other independent Stimulants lose enough 

confidence that they cross the dependence threshold and are converted back to follower 

Stimulants. When a Stimulant becomes a follower again, it purges its local tactic list. By 

doing this, it is free to consider all the available Tactics again. This is useful because a 

more effective Tactic may have been added to the global Tactic list during the period that 

the Stimulant was independent. This is an opportunity for the follower to rediscover an 

effective Tactic.  

3.3.7 Discussion of UpdateSTM 

When the STM receives a compensation value and the history from the CLA it must 

apply the update function to the compensation in order to calculate the new weight of the 

respondents in the history. The update policy to be used in this research is given below. 

This update policy is designed to keep the weights in the STM in a reasonable balance. 

This update function also distinguishes between the Stimulants that were very confident 
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in their responses and those that were not. A full description of the compensation policy 

is given in Section 3.3.4, but briefly, confident Stimulants should receive smaller positive 

updates and larger negative updates than Stimulants that are still learning and not yet 

confident in a respondent.  

Postulate 09:  The update policy for both games is  

 IF (φ is confident) THEN 

  w1 
← w 

 ELSIF (φ’s tie confidence >= tie threshold AND  

  φ’s reject confidence >= reject threshold) 

  w1 
← wγconfident 

 ELSE 

  w1 
← wγnormal 

 END IF 

3.3.8 Tactic 

The Tactic’s main purpose is to provide a data structure for the global and local 

tactics. A Tactic contains the number of the respondent that it represents, its potency 

(global or local), and a list of supporters, if it is a global Tactic. A follower Stimulant 

does not need to know which other Stimulants happen to be supporters of its Tactic; it is 

only interested in the local potency of the Tactic. Aside from the data structure, the Tactic 

module contains one important piece of the algorithm: the policy for updating a Tactic’s 

global or local potency. In this section, the data structure is presented first and then the 

potency update policy is discussed in more detail.  
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ID  

A Tactic has a unique and comparable identification that is usually the same as the 

number of the respondent that the Tactic represents.  

integer response  

response  is the index of the respondent to which Tactic corresponds. 

double potency  

This is the current value of the Tactic’s potency. If the Tactic is stored in the global tactic 

list, then this number is the global potency of the tactic. If the Tactic is stored locally with 

a Stimulant, then this number is the local potency of the Tactic.  

List supporters  

Only global Tactics use this list. It contains the identifications of Stimulants that support 

a given Tactic. If the Tactic is local, then this list remains empty.  

integer success   

This is the number of times the Tactic has been used by a Stimulant and received positive 

compensation. It is used in calculating the potency of the Tactic.  

integer fail   

This is the number of times the Tactic has been used by a Stimulant and received negative 

compensation. It is used in calculating the potency of the Tactic.  

UpdateTacticPotency( RECEIVE compensation)   

This procedure is responsible for updating the Tactic’s potency. The algorithm is the 
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same whether the Tactic is global or local. To update a Tactic’s potency, the 

compensation is first averaged with the current potency. If the compensation received 

while using this tactic was greater than or equal to the minimum positive compensation 

value (set as a parameter), the use of the tactic is considered a success. The number of 

successes or failures is then updated accordingly.  

By averaging the current compensation with the potency, greater influence is given to 

the compensation the Tactic received earlier in learning. This process is important 

because earlier in learning, more Stimulants are followers and are therefore behaving in a 

more stable way. If negative compensation is received early in learning, it is very likely 

that this Tactic is not effective for its current follower. If the compensation received early 

in learning is positive, it is very likely that this Tactic is, in fact, effective for its current 

follower.  

Later on in learning, more Stimulants become independent. If the collection length is 

longer than one, then the erratic behavior of independent Stimulants may negatively 

affect the compensation received by a follower Stimulant. By weighting the first few 

experiences a follower Stimulant has with a Tactic more heavily, the quicker a Stimulant 

abandons an ineffective Tactic and the more “trust” it develops in an effective Tactic. 

This trust can help followers stay with a Tactic through the times when the follower’s 

performance is being evaluated in the same collection as another independent Stimulant.  

3.3.9 Stimulant 

Although the STM is usually visualized as a matrix, it is more practical, from a 

programming standpoint, to keep each column of the STM with its associated Stimulant. 

The Stimulant module provides important data structures that are discussed in this 

section.  
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ID  

A unique and comparable identifier.  

integer intentSize  

intentSize  is the size of the effective intent. In some cases, certain respondents in the 

intent are not legal for a given Stimulant. Consider a game like chess. In general, the 

queen is free to move in all directions; however, the queen may not take the place of 

another piece on the queen’s team, nor may the queen move off of the board. To 

compensate for this, each Stimulant keeps track of its own effective intent. 

List pProb  

pProb  is a list of all the respondents currently sharing the highest posterior probability. 

It is necessary to have a list and not just a single respondent’s ID because it is possible, 

especially early on in learning, more than one respondent may have the same posterior 

probability.  

List sProb  

sProb  is a list of all the respondents currently sharing the second highest posterior 

probability. It is necessary to have a list and not just a single respondent’s ID because 

many times, especially early on in learning, more than one respondent may have the same 

posterior probability. 

integer reject  
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reject  is the confidence that the following null hypothesis can be rejected  

H0:  the value of the primary posterior probability is significantly 

different from the apriori probability.  

integer tie  

tie  is the confidence that the following null hypothesis can be rejected  

H0:  the value of the primary posterior probability is 

significantly different from the value of the secondary posterior 

probability. 

integer selection  

The selection confidence, which is not a true statistical confidence, is the minimum of the 

reject and tie confidences. This value is used as a shorthand measure of the confidence a 

Stimulant has in its knowledge.  

double[][] column  

This double array holds the weights, counts, and statistics for a given Stimulant in the 

STM. When using Maximum Likelihood to calculate the posterior probabilities, three 

arrays are necessary.  The first array holds the weights for each respondent that have 

accrued over the learning process. The second array holds the count of the number of 

times the stimulant has chosen a given respondent. The third array holds the posterior 

probabilities.  

List tactics  

tactics  is a list of the Tactics this Stimulant has considered.  
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Boolean independent  

independent  takes the value TRUE if this is an independent Stimulant and takes the 

value FALSE otherwise. This variable always takes the value FALSE if the Stimulant is 

in a Standard-CLA.  

Boolean supporter  

supporter  takes the value TRUE if this Stimulant is confident and supports a Tactic. 

This variable takes the value FALSE if this Stimulant does not support a tactic. This 

variable always takes the value FALSE if the Stimulant is in Standard-CLA. 

Boolean usefulTactic  

usefulTactic  takes the value TRUE if this Stimulant has a potent local tactic and 

takes the value FALSE if it does not. This variable retains the value TRUE even when the 

Stimulant becomes independent. This variable takes the value FALSE if the Stimulant is 

in a Standard-CLA. 

3.3.10 Response  

A Response provides the data structure that is passed to the Environment from the 

CLA through the Manager and stored in the history. This section describes the data 

structure in more detail. 

StimulantID  

The unique and comparable ID for the Stimulant in the stimulus-response pair. 

integer respondent  

The identification number of the respondent chosen by the CLA. 
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Boolean usedTactic  

usedTactic  takes that value TRUE if the Stimulant was a follower and FALSE 

otherwise. The variable usedTactic  has the value FALSE in a Standard-CLA. 

 

Tactic t  

The local Tactic used in this interaction. If no Tactic was used, then t takes the value 

null . 

integer tie  

tie  is the tie confidence for this interaction.   

integer reject  

reject  is the reject confidence for this interaction.    

integer selectionConfidence  

selectionConfidence  is the selection confidence for this interaction.    

Boolean independent  

independent  takes that value TRUE if the Stimulant was an independent Stimulant 

and FALSE otherwise. The variable independent  has the value FALSE in a Standard-

CLA.  

Boolean isSupporter  

isSupporter  takes that value TRUE if the Stimulant supports a Tactic and FALSE if 

the Stimulant does not. The variable isSupporter  has the value FALSE in a Standard-

CLA.   
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Boolean TBL  

TBL takes that value TRUE if the CLA is using the TBL selection policy and FALSE if 

the CLA is using the Standard selection policy. 

3.3.11 TruthTable 

The TruthTable module holds information about the domain and range sizes of the 

different TruthTables, their names, and the correct responses for each state of a given 

TruthTable.  

String names[]  

names is an array of the names of the TruthTables. 

integer intentExtentState[][]  

intentExtentState  is an array of arrays of integers describing the dimensions of 

the TruthTables. The inner arrays are integer triplets that give the size of the intent, the 

size of the extent, and the number of states in each TruthTable. For the purposes of this 

research, TruthTables have the same intent and extent sizes for all states.  

integer aTruthTable[][]  

aTruthTable  is a sample TruthTable. An array of integer arrays, each TruthTable 

contains an inner array for each state. Each position in an inner array represents a 

Stimulant and the value at that position in the array represents the correct respondent for 

that Stimulant. For example, aTruthTable[3][]  may hold the array {2,3,4,5,6 }. 

This means that for the third state of aTruthTable  the correct stimulus-response pairs 

are (1, 2); (2, 3); (3, 4); (4, 5); and (5, 6). 
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To generate TruthTables that are not square, meaning that the extent is larger than the 

intent, cycling through the state array creates stimulus-response pairs that are not 

explicitly stated in the state array. This can be done by the Manager or the Environment. 

For example, if aTruthTable[3][] actually had an extent of size 10 instead of 5, 

then the remaining stimulus-response pairs would be (6,2); (7,3); (8,4); (9,5); and (10, 6). 

3.3.12 Time Complexity of the TBL Algorithm 

Almost all of the additional operations that take place when using TBL occur at the 

local level of a Stimulant. In the worst case scenario, a Seeker Stimulant, a stimulant that 

is in need of a tactic, would have to search through the entire list of global tactics only to 

discover that there are no new tactics available. The global list of tactics is limited by the 

size of the intent (M), and the intent is guaranteed to be significantly less than the size of 

the extent (N). Therefore the TBL algorithm does not increase O(N), the time complexity 

based on the number of stimulants in the STM.  

The only operation introduced by TBL that does require “touching” each stimulant is 

the resignation of a global tactic. When a global tactic resigns, it must be removed from 

any and all local tactic lists. This means that every Stimulant must be visited to insure 

that the resigning tactic is removed. Assuming that the STM has been implemented with 

some data structure with O(N) = logN search time, the removal of a global tactic requires 

O(N) = NlogN time.  

Postulate 10:  The time complexity of the removal of a global tactic has 
Equation 3 

 ���� �  � log � 
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Postulate 11:  The average time complexity increase for using TBL is 
Equation 4 

 ������� � �0�, ����������	�� �  

3.4 The TruthTable Game 

A game, called the TruthTable game, is used for the experiments in this research. 

This section describes the game and introduces the variations that were used in the 

research.  

3.4.1 Overview of the game 

The TruthTable game is a solitaire classification task. The TruthTable is represented 

by an n by m array where there are n inputs and m outputs. For each input there must be 

at least one correct output, but there may be more than one correct output. The game has 

several states. Each state is a different organization of the correct input-output pairs. 

Defintion 37:  A state of the TruthTable game is one of its arrangements of 

input-output pairs.  

As long as all inputs have the same number of correct outputs, the configuration of 

the correct outputs does not matter to a Standard-CLA. Each configuration is equivalent 

because a Standard-CLA treats each input as an independent entity with no relationship 

to any other input. For a Standard-CLA, the game only gets harder as the number of 

inputs increases. It is important to note that neither the order of the inputs nor the order of 

the outputs is significant. All four game states in Figure 4 are equivalent to a Standard-

CLA; however, the states in Figure 5 are not equivalent.  
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(a) 

(b) 

(c) 

Figure 5: Non-equivalent Game States These three game states are different from the perspective of a Standard-CLA. 

State (b) has more outputs than (a); therefore, it takes a CLA longer to learn the correct output for each input for 

state (b).  State (c) has more inputs than state (a), so while a CLA does not need more time to learn than it needs in 

state (a), there are twice as many inputs to be learned.  

While the configuration of the outputs does not significantly affect the learning 

behavior of a Standard-CLA, a TBL-CLA is designed specifically to take advantage of 

the fact the some inputs might share the same output. Some configurations are more 

advantageous to a TBL-CLA than others. This advantage is called the Tactic-Based 

Learning Advantage, TBL αααα, of a game state. The more inputs share the same output and 

the lower the number of outputs used, the higher the TBLα.  

 

 Figure 4: Sample Game States Each grid represents a single game state. In each grid, the inputs are the columns 

and the outputs are the rows. Each green cell represents the correct output for that input column. The object of 

the game is to find the correct output for every input. 
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Postulate 12:  The Tactic-Based Learning advantage (TBL αααα) of a given game 

state is computed as follows: 
  Equation 5  

!"#$ �  � %��%� &  1�
	

���
 

 where n = the size of the range (the number of classes) and ci = the 
number of inputs assigned to a given output 

 

The TBLαααα, of a game state is simply a way to rank game states to determine the 

potential utility of using a TBL-CLA. It is expected that as the TBLαααα rises, a reasonably 

configured TBL-CLA would outperform a Standard-CLA to a greater degree. Figure 6 

shows some sample game states and their TBLαααα.  
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(a) TBLαααα = 2(2-1) + 2(2-1) + 0(0-1) + 2(2-1) + 0(0-1) = 6 

 

(b) TBLαααα = 3(3-1) + 3(3-1) + 7(7-1) + 3(3-1) + 4(4-1) = 72 

 

(c) TBLαααα = 6(6-1)= 30 

 

(d) TBLαααα = 20(20-1)= 380 

Figure 6: TBLαααα for sample states (a) and (c) are equivalent states for a Standard-CLA as are states (b) and (d), 

however, all four states have different TBLαααα. The TBLαααα increases as the number of inputs increases and as the correct 

outputs become less disperse. 
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3.4.2 Rules of the game 

The object of the TruthTable game is to identify the correct output for each input. The 

TruthTable game is played as follows. The environment presents the CLA with a series 

of random inputs. The CLA chooses outputs and presents them to the environment. The 

environment periodically evaluates the CLA by scoring a group of outputs (the current 

history). The game stops when the CLA has reached an appropriate level of confident 

accuracy or the CLA runs out of time.  

Postulate 13:  The confident accuracy of a CLA is the average selection 

confidence for a given test point multiplied by the average 

score for the test point expressed as a percentage.  

Postulate 14:  The scoring function of the TruthTable game is the fraction of 

correct outputs in the current history. 

3.4.3 Basic game play  

For this research, the game is played in two phases. The first phase is called the 

initial phase. During the initial phase, a CLA learns to play on a small subsection of the 

eventual game state. The initial phase contains 6 inputs and 6 outputs. Once the CLA has 

reached a high level on confident accuracy on the initial phase (> 99.9%), the state is 

extended out along the domain (inputs) to its full size. The extended phase of the game is 

called the secondary phase and contains the 6 by 6 section of the initial phase and adds 

294 new inputs for a 6 by 300 full sized state. In this research, the extension is achieved 

by repeating the pattern of correct input-output pairs several times until the domain is 300 

inputs long.  This process is shown in Figure 7. 
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Initial Phase 

 

Secondary Phase 

 

Figure 7: Sample Initial and Secondary Phases In the initial phase, a CLA trains with a small subsection of the game 

state. After achieving a confident accuracy > 99.9%, the secondary phase of the game begins and the remainder of 

the inputs are introduced. Note that the section of the game state used in the initial phase remains as part of game 

state. For this research, all game states are created by simply repeating the initial section of the state until there are 

300 inputs in the state. 

3.4.4 Justification of phased game play 

Some may question the validity of phased game play because it would seem to give 

an additional advantage to the TBL-CLA. Allowing the Standard-CLA to train on a small 

section of the game state first gives it the opportunity to learn that section quickly 

because each input are seen more often, but that initial advantage is small once the 

secondary phase is entered. On the other hand, the TBL-CLA has not only mastered the 

inputs in the initial phase, it has identified all of the tactics it needs to succeed in the 

654321

181716151413121110987654321 300299298297296295

…
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game. When the TBL-CLA starts the secondary phase, it only need identify the 

appropriate tactic for a given input and it has won the game.  

Why not simply do away with the initial phase and start a CLA on the secondary 

phase? QD pilots have shown that doing so lessens the impact of tactic-based learning. 

By the time tactics have been identified, there are usually few stimulants left with a 

selection confidence low enough to take advantage of a tactic for long. The phased 

structure of the game can be justified from a social perspective and biological 

perspective. There are many examples in nature of adults shielding their young from the 

full range of experiences they will eventually have to face. Many species are born 

without the capacity to provide themselves with food even after a weaning period. 

Parents spend a great deal of time and energy to provide food for their young and to 

protect their young from threats they cannot handle yet.  

From a biological perspective, human beings rely most heavily on vision to navigate 

and explore the world. In human infants, however, the vision system is not fully 

developed at birth. Infants’ eyes do not develop the full range of photoreceptors on the 

retina until they are about 6 months old and it takes about 2 years for infants to be able to 

perform all visual tasks at the level of an adult. Clearly, many of these developments are 

delayed because there is little to stimulate vision in the womb, but this also serves as a 

protective measure, allowing the neonate to manage the violent transitions of birth in 

gentle stages by slowly adding more visual stimulation. There is also evidence that 

neonates that are overstimulated can become overwhelmed which causes them to 

withdraw from their environments. If this happens repeatedly, these children also suffer 

developmental delays and difficulties (Berk 2003). 
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By structuring the game play into stages, there is an acknowledged advantage being 

given to the TBL-CLA; however, this advantage has strong parallels in both biological 

and social strategies for supporting young learners.  

3.4.5 Game states used  

All the canonical experiments in the research use a 6 by 6 subsection of the game 

state in the initial phase and then add 49 repetitions of the subsection for a total game 

state of 6 by 300. As was pointed out in Section 3.4.1, any arrangement of the target cells 

is equivalent to any other arrangement from a Standard-CLA’s perspective, but the 

arrangement does affect how much advantage there is to be gained from using TBL. 

Different arrangements are used to explore the effect that the number of possible tactics 

available to a CLA has on its learning behavior. In order to minimize any extraneous 

advantage that might be given to a TBL-CLA by a fortunate arrangement of the target 

cells, only the arrangements with the lowest possible TBLαααα and an equal number of target 

cells per target response were chosen. Figure 8 shows all possible game states for a 6 by 6 

substate. The game states shown in Figure 9 are used as factors of the research. 

Defintion 38:  A target cell is a cell in a TruthTable, which signifies a correct 

input-output pair.  

Defintion 39:  A target response is an output in a TruthTable that is associated 

with at least one target cell. 

Defintion 40:  A substate is a small section of a state; it usually has all of the 

target responses in it. 
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1 target output 

initial TBLα = 30 

secondary TBLα = 89,700 

  

2 target outputs  

initial TBLα = 25 

secondary TBLα = 64,700 

 

initial TBLα =14 

secondary TBLα = 49,700 

 

initial TBLα =12 

secondary TBLα = 44,700 

3 target outputs 

initial TBLα = 12 

secondary TBLα = 44,700 

initial TBLα = 8 

secondary TBLα = 34,700 

initial TBLα = 6 

secondary TBLα = 29,700 

  

654321

654321
654321 654321

654321 654321 654321
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4 target outputs 

initial TBLα = 6 

secondary TBLα = 29,700 

 

initial TBLα = 4 

secondary TBLα = 24,700 

 

5 target outputs 

initial TBLα = 2 

secondary TBLα = 19,700 

  

6 target outputs 

initial TBLα = 0 

secondary TBLα = 14,700 

  

Figure 8: All Possible Initial States All arrangements that have only one target output per input are equivalent to a 

Standard-CLA, but the arrangement does make a difference to a TBL-CLA. All possible arrangements of the initial 

state are given along with the TBLα for both the initial and the secondary phases. 

 

  

654321 654321

654321

654321
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1 target output 

initial TBLα = 30 

secondary TBLα = 89,700 

2 target outputs  

initial TBLα =12 

secondary TBLα = 44,700 

3 target outputs  

initial TBLα = 6 

secondary TBLα = 29,700 

6 target outputs 

initial TBLα = 0 

secondary TBLα = 14,700 

Figure 9: Initial States Used as Factors The initial states were chosen as the subset of all possible initial states to be 

used as factors. These states all have an equal number of inputs assigned to each target output and they each have 

the lowest possible TBLα for the number of target outputs. 

654321 654321

654321 654321
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The details of the game that have been presented in this section represent the most 

basic version of the game. The game must be altered slightly to meet goals.  All changes 

made to the basic rules of the game are explained thoroughly in Sections 4.1.4 and 4.1.5, 

which describe those experiments. 

3.5 Goals   

The goal structure in this section indicates how the application of the solution method 

achieves the research objective. The primary goal of the research is to measure the 

performance of a CLA using TBL. In order to achieve this primary goal, many subgoals 

must first be achieved. These subgoals include conducting operating point pilots to set the 

values of fixed parameters and conditions and to select appropriate ranges and increments 

for the factors (Goal 1), conducting formal, canonical experiments to measure the 

performance of a TBL-CLA in general (Goal 2), and the performance of a TBL-CLA in 

detail over a few representative cases (Goal 3). The factors and performance metrics for 

the formal experiments are defined in this section with their related goal and postulated in 

Section 3.6 (Performance Metrics).  

 

 

Primary Goal: Measure a TBL-CLA’s performance. The primary goal of the research 

is to measure the performance of a TBL-CLA.  

G1: To specify all fixed parameters and conditions. There are many parameters and 

conditions that are not factors in the research. These parameters and conditions are 

fixed at reasonable levels and settings. These values are found through informal 

searches of the factor space.  
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Factors: collection length, c 

 reject threshold Kr 

 tie threshold Kt 

 minimum level of tactic potency, p 

G2: To measure the general canonical behavior of a TBL-CLA. There is a need to 

demonstrate the general patterns of behavior in canonical situations. Results are 

presented exclusively as footprints. 

G2.1: To measure TBL behavior when the Environment is stable and there is 

only one correct response for each stimulus.  

Factors: collection length, c 

TBL thresholds: support κ
s
 

  withdrawal κ
w
 

  independence κ
i
 

  dependence κ
d
 

  TruthTable game state 

Performance Metrics: Payoff, P 

n-tile advantage 

Expense  

G2.1.1: Determine appropriate factor ranges (OP Pilot)  

Factors: TBL thresholds: support κ
s
 

  withdrawal κ
w
 

  independence κ
i
 

  dependence κ
d
 

Performance Metrics: Payoff, P 

n-tile advantage 

Expense  
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G2.1.2: Determine appropriate settings for fixed conditions and parameters 

(OP Pilot)  

Factors: compensation threshold, κγ 

Performance Metrics: Payoff, P 

n-tile advantage 

Expense  

G2.2: To measure TBL behavior when the Environment is stable and there are 2 

correct responses for every stimulus.  

Factors: collection length, c 

TBL thresholds: support κ
s
 

  withdrawal κ
w
 

  independence κ
i
 

  dependence κ
d
 

  TruthTable game state 

Performance Metrics: Payoff, P 

n-tile advantage 

Expense  

G2.2.1: Determine appropriate factor ranges (OP Pilot)  

Factors: TBL thresholds: support κ
s
 

  withdrawal κ
w
 

  independence κ
i
 

  dependence κ
d
 

Performance Metrics: Payoff, P 

n-tile advantage 

Expense  
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G2.3: To measure TBL behavior when the Environment is not stable and there is 

only one correct response for each stimulus.  

Factors: collection length, c 

TBL thresholds: support κ
s
 

  withdrawal κ
w
 

  independence κ
i
 

  dependence κ
d
 

  TruthTable game state 

Performance Metrics: Payoff, P 

n-tile advantage 

Expense  

G2.3.1: Determine appropriate factor ranges (OP Pilot)  

Factors: TBL thresholds: support κ
s
 

  withdrawal κ
w
 

  independence κ
i
 

  dependence κ
d
 

Performance Metrics: Payoff, P 

n-tile advantage 

Expense  

G2.3.2: Determine appropriate settings for fixed conditions and parameters 

(OP Pilot) 

Factors: compensation threshold, κγ 

Performance Metrics: Payoff, P 

n-tile advantage 

Expense 

G3: To explore specific TBL treatments of interest more deeply 
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G3.1: To explore specific cases of the results from G2.1. Further exploration into 

specific cases of the canonical experiments (stationary game, one response per 

stimulus).  

Factors: case (average, strong TBL performance, poor TBL performance, any others 

that stand out for some reason) 

Performance Metrics: learning curves 

TBL roles 

random responses 

G3.1.1: Determine treatments to select  

Factors: TBL thresholds: support κ
s
 

  withdrawal κ
w
 

  independence κ
i
 

  dependence κ
d
 

Performance Metrics: Payoff, P 

n-tile advantage 

Expense  

G3.2: To explore specific cases of the results from G2.2.  

Factors: case (average, strong TBL performance, poor TBL performance, any others 

that stand out for some reason) 

Performance Metrics: learning curves 

TBL roles 

random responses 

G3.2.1: Determine treatments to select  

Factors: TBL thresholds: support κ
s
 

  withdrawal κ
w
 

  independence κ
i
 

  dependence κ
d 

 



 

 108  

Performance Metrics: Payoff, P 

n-tile advantage 

Expense  

G3.3: To explore specific cases of the results from G2.3. Further exploration into 

specific cases of the canonical experiments (task-switching game, one 

response per stimulus).  

Factors: case (average, strong TBL performance, poor TBL performance, any others 

that stand out for some reason) 

Performance Metrics: learning curves 

TBL roles 

random responses 

G3.3.1: Determine treatments to select  

Factors: TBL thresholds: support κ
s
 

  withdrawal κ
w
 

  independence κ
i
 

  dependence κ
d
 

Performance Metrics: Payoff, P 

n-tile advantage 

Expense  

 

3.6 Performance Metrics 

This section discusses the performance metrics used in this research. They are Payoff, 

n-tile advantage, Expense, changing TBL roles, learning curves, and the number of 

random selections made during a test period. The first three metrics are used to measure 

overall performance across a wide range of factors and their values to provide significant 

statistical conclusions under a rigorous Monte Carlo test protocol. The last three metrics 
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are applied to single treatments only to illustrate some examples of special and unusual 

behavior. These two goals and their associated experiments, results, and conclusions are 

referred to as the formal and informal goals. 

In all the experiments, the performance of the TBL-CLA is compared with the 

performance of a Standard-CLA, both of which are implemented under the same 

parameters and conditions (game state, collection length, etc.). Because many of the 

metrics may need to compare the performance of two players that finish the task at 

different times, a few important terms must be defined before the postulated performance 

metrics can be understood. To assist in this process, Figure 10 represents two 

hypothetical learning curves of the two types of CLA during a single treatment.  

Because the summary performance is computed by comparing the individual 

performances of the two CLAs, which can complete the game at different times, it is 

important to record the results at the two different termination points. The first 

termination point is the contest at which either CLA first satisfies the stopping criterion. 

The second termination is the contest number at which the other CLA eventually satisfies 

the stopping criteria. Recall that the stopping criterion is satisfied when either one of the 

CLAs reaches a confident accuracy > 99.9%, or the match has reached 100,000 contests. 

 

Defintion 41:  The first termination , t1, is the contest at which the first CLA 

satisfies the stopping criterion.  

Defintion 42:  The second termination, t2, is the contest at which the second 

CLA reaches the stopping criterion. 



 

 110  

Recall that the TruthTable game is played in at least two phases. In the initial phase, a 

CLA trains on a small subsection of the eventual problem. The performance metrics 

never include the initial phase, but are only computed for the secondary or tertiary phase 

as appropriate. 

Figure 10: Learning curves for a single treatment The blue and red lines represent the Monte Carlo average score of 

the TBL-CLA and the Standard-CLA, respectively. The vertical error bars represent the 95% confidence interval. The 

first dotted line which extends down to about 75,000 contests marks the first termination. The second dotted line, 

extending down to about 91,000 contests, marks the second termination. A CLA trains until it achieves a confident 

accuracy > 99.9% or until it reaches 100,000 contests. For the CLA that finishes first, the last performance measures 

are to compute the remaining metrics for the CLA that finished second. 

TBL-CLA 

Standard-
CLA 
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3.6.1 Payoff 

At each test point, it is possible to measure the difference between the scores of the 

two CLAs. Because these differences are Monte Carlo averages of 30 instances of the 

same CLA started with different seeds for the random number generators, it is also 

possible to compute the confidence that the H0 that there is no difference between the two 

scores can be rejected.  The benefit at each test point is calculated as the confident 

difference between the two scores.  

Postulate 15:  the benefit, bi, at a given test point is computed as follows: 

    

 Equation 6                       bi = RH0 (sTBL  - sStandard) 

where sTBL and sStandard are the scores of the TBL and Standard-CLAs, 

respectively, and RH0 is the confidence with which the null hypothesis H0 that 

there is no difference between the two scores can be rejected. 

The Payoff, P, is the average of the benefits over all the test points to first 

termination. Using Payoff as a metric allows one treatment to be equitably compared with 

another treatment.  

Postulate 16:  the Payoff, P, of a treatment is:   

  

Equation 7                                                        

( �  ∑ *�	���
��+

 



 

 112  

3.6.2 n-tile advantage 

Payoff is a summary metric that assigns a single value to the entire learning process. 

Because it is an average of the benefit, it can necessarily hide some important aspects of 

the learning curve. For example, if a TBL-CLA and the Standard-CLA are never 

statically different in the learning curves, the Payoff is zero. It is also possible that the 

TBL-CLA has a positive benefit for about half of the test points and has a negative 

benefit of equal magnitude for the other half of the test points. In that case, the Payoff 

would also be close to 0.0.  

The n-tile advantage is used to capture the learning curve in a way that is still easily 

visualized. The confidence that the two scores are different, rejectH0
, is measured at 10% 

of the first termination period, 20%, 30%, and so on. If the first termination period is 

20,000 contests, then the confidence is measured at the following contests: 2,000; 4,000; 

6,000; 8,000; 10,000; 12,000; 14,000; 16,000; 18,000; and 20,000. A confidence of 95% 

means that the TBL-CLA’s score is greater than the Standard-CLA’s score with 

confidence of 95%. A confidence of -95% means that the TBL-CLA’s score is less than 

the Standard-CLA’s score with a confidence of 95%. Because the n-tile advantage only 

reports a confidence, there is no indication of the size of the difference.  

Postulate 17:  The n-tile advantage of a treatment at a given contest is the two-

tailed rejection confidence of H0. 

3.6.3 Expense 

The Expense is the number of contests between the TBL-CLA’s termination and 

Standard-CLA’s termination. This is a way of measuring how much effort is saved vis-à-

vis the Standard-CLA. The Expense is also presented in the footprint format to allow for 

comparison between treatments.   
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Postulate 18:  The Expense is the difference between the number of contests the 

TBL-CLA needs to terminate and the number of contests the 

Standard-CLA needs to terminate.  

With Expense, a negative number means that it took the TBL-CLA fewer contests to 

reach the termination conditions that the Standard-CLA required.  

3.6.4 Footprints 

Payoff, n-tile advantage, and Expense are all aggregate metrics that can be used to 

equitably compare different treatments. In order to see the interactions for the factors on 

the learning behavior, the aggregate metrics are presented in footprints . A footprint is a 

table in which performance measures are shown by changes in color. 

A sample footprint is presented in Figure 11. Each cell in the footprint represents the 

sample measure for an individual treatment. For all experiments, only results from the 

final phase of the game are presented, so the initial phase of learning, when CLAs train 

on a subsection of the problem, is not included. 

All footprints are presented in the same format. The metric name is the header of the 

footprint. The columns are divided by collection length and then subdivided by the 

number of target responses in the game state. The TBL factors, the thresholds, are the 

variables in the rows. The order of the thresholds is always, from left to right, the support 

threshold (κs), the withdrawal threshold (κw), the independence threshold (κi), and the 

dependence threshold (κd).  

The scale that governs the coloring of the cells is not symmetrical around zero. 

Payoff, n-tile advantage, and Expense can all be positive or negative. In the footprints, 

pure white is always reserved for zero, but in order to highlight the important extremes, 
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the distribution of the hues is not always proportional. It is important to note that the 

color scales are adjusted for each experiment, so care must be taken when reading 

footprints. 
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Figure 11: Sample Footprint the influence of the TBL factors (K*), collection length, and number of target 

responses is visualized by color shading. Note that the shading is not symmetrical around zero, nor are the 

positive or negative scales distributed linearly.  

<performance metric>
collection length

1 2 4 6 12

TBL Thresholds (K*) number of targets

support withdrawalindependencedependence1 2 3 6 1 2 3 6 1 2 3 6 1 2 3 6 1 2 3 6

99 99 99 99 # # # # # # # # # # # # # # # # # # # # scale

99 99 99 99 # # # # # # # # # # # # # # # # # # # # -1
99 99 99 99 # # # # # # # # # # # # # # # # # # # # -0.96
99 99 99 99 # # # # # # # # # # # # # # # # # # # # -0.92
99 99 99 99 # # # # # # # # # # # # # # # # # # # # -0.88
99 99 99 99 # # # # # # # # # # # # # # # # # # # # -0.84
99 99 99 99 # # # # # # # # # # # # # # # # # # # # -0.8
99 99 99 99 # # # # # # # # # # # # # # # # # # # # -0.76
99 99 99 99 # # # # # # # # # # # # # # # # # # # # -0.72
99 99 99 99 # # # # # # # # # # # # # # # # # # # # -0.68
99 99 99 99 # # # # # # # # # # # # # # # # # # # # -0.64
99 99 99 99 # # # # # # # # # # # # # # # # # # # # -0.6
99 99 99 99 # # # # # # # # # # # # # # # # # # # # -0.56
99 99 99 99 # # # # # # # # # # # # # # # # # # # # -0.52
99 99 99 99 # # # # # # # # # # # # # # # # # # # # -0.48
99 99 99 99 # # # # # # # # # # # # # # # # # # # # -0.44
99 99 99 99 # # # # # # # # # # # # # # # # # # # # -0.4
99 99 99 99 # # # # # # # # # # # # # # # # # # # # -0.36
99 99 99 99 # # # # # # # # # # # # # # # # # # # # -0.32
99 99 99 99 # # # # # # # # # # # # # # # # # # # # -0.28
99 99 99 99 # # # # # # # # # # # # # # # # # # # # -0.24
99 99 99 99 # # # # # # # # # # # # # # # # # # # # -0.2
99 99 99 99 # # # # # # # # # # # # # # # # # # # # -0.16
99 99 99 99 # # # # # # # # # # # # # # # # # # # # -0.12
99 99 99 99 # # # # # # # # # # # # # # # # # # # # -0.08
99 99 99 99 # # # # # # # # # # # # # # # # # # # # -0.04
99 99 99 99 # # # # # # # # # # # # # # # # # # # # 0
99 99 99 99 # # # # # # # # # # # # # # # # # # # # 1
99 99 99 99 # # # # # # # # # # # # # # # # # # # # 2
99 99 99 99 # # # # # # # # # # # # # # # # # # # # 3
99 99 99 99 # # # # # # # # # # # # # # # # # # # # 4
99 99 99 99 # # # # # # # # # # # # # # # # # # # # 5
99 99 99 99 # # # # # # # # # # # # # # # # # # # # 6
99 99 99 99 # # # # # # # # # # # # # # # # # # # # 7
99 99 99 99 # # # # # # # # # # # # # # # # # # # # 8
99 99 99 99 # # # # # # # # # # # # # # # # # # # # 9
99 99 99 99 # # # # # # # # # # # # # # # # # # # # 10
99 99 99 99 # # # # # # # # # # # # # # # # # # # # 12
99 99 99 99 # # # # # # # # # # # # # # # # # # # # 14
99 99 99 99 # # # # # # # # # # # # # # # # # # # # 16
99 99 99 99 # # # # # # # # # # # # # # # # # # # # 18
99 99 99 99 # # # # # # # # # # # # # # # # # # # # 20
99 99 99 99 # # # # # # # # # # # # # # # # # # # # 25
99 99 99 99 # # # # # # # # # # # # # # # # # # # # 30
99 99 99 99 # # # # # # # # # # # # # # # # # # # # 35
99 99 99 99 # # # # # # # # # # # # # # # # # # # # 40
99 99 99 99 # # # # # # # # # # # # # # # # # # # # 45
99 99 99 99 # # # # # # # # # # # # # # # # # # # # 50
99 99 99 99 # # # # # # # # # # # # # # # # # # # # 55
99 99 99 99 # # # # # # # # # # # # # # # # # # # # 60
99 99 99 99 # # # # # # # # # # # # # # # # # # # # 65
99 99 99 99 # # # # # # # # # # # # # # # # # # # # > 65
99 99 99 99 # # # # # # # # # # # # # # # # # # # #
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3.6.5 Learning curves 

A learning curve is a graph which describes the scores of the CLA at each test point. 

The learning curve graph is useful for examining the behavior of the CLAs during a 

single treatment. The learning curves are only used for examining the results of a single 

treatment in greater detail. Each point on the lines of the graph represents a Monte Carlo 

average of 30 CLAs with different seeds for the necessary pseudo-random number 

generators. The error bars are the 95% confidence interval for the averages. Figure 12 

shows a sample learning curve.  

Figure 12: Sample Learning Curve the learning curve shows the Monte Carlo averages if the scores at each test point. 

The error bars represent the 95% confidence interval. 

While the learning curve is not truly a metric in itself, it is a very useful tool for 

visualizing learning behavior. The error bars are 95% confidence intervals, making it is 

easy to see when the scores are significantly different.  
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When one CLA reaches the termination condition before another, its final score is 

extended out until the second CLA reaches the termination conditions. This extension is 

visualized in a lighter color of the original line. 

3.6.6 TBL roles 

In order to assess and understand the behavior of a TBL-CLA, it is necessary to 

understand the impact of the different roles that a stimulant can be in at any given time. 

These roles − supporter, independent, follower, and seeker − determine how the stimulant 

selects its respondent. The TBL role graph displays the role of each stimulant at each test 

point during learning for a single treatment. This graph can only be used to show the 

results from one treatment.  

The roles are presented in a stacked bar graph. Figure 13 contains a simplified version 

of the role graph. Each column always contains the same total number of stimulants, 300 

stimulants in the canonical experiments. Each column represents the stimulants at a given 

test point. The distribution of stimulants in different roles is shown by the size of colored 

section corresponding to a role.  

Figure 14 is a sample TBL role graph as it is presented in the results. In addition to 

the distribution of the roles, the TBL role graph also includes a line which represents the 

score, or learning curve, of the CLA. Observation of the relationship between the score of 

the TBL-CLA and the changing distribution of the roles is the basis for conclusions about 

the influence of the roles on the learning behavior. 
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Figure 13: Simplified Stacked Bar Graph of TBL Roles each column represents all the stimulants in the STM at a given 

test point. The different colors in each column represent the distribution of roles that the stimulants are in at the test 

point. The number of stimulants is always the same, but the roles change. The data table shows to actual distribution 

of stimulants into the different roles. As time goes on, the number of seeker stimulants goes down with the number 

of supporters goes up. 



 

 119  

Figure 14: Sample TBL Role Graph the CLA uses the greatest number of follower stimulants early in learning. There is 

a dip in the score as the number of independent stimulants rises, causing an increase in the number of random 

choices being made. The increase in the number of supporter stimulants is consistent with the increase in the score. 

Throughout learning, a small number of follower and independent stimulants remain are extant. By the time the CLA 

has met the termination conditions, all of the stimulants are supporters.  

3.6.7 Random responses 

One of the objectives of this research is to develop a solution which reduces the 

reliance on pseudo-random number generators. The number of random responses made 

during a treatment by the CLAs is a way to assure that this is the case. A random 

response is a response which required a tie to be broken. These responses would include 

those in which a CLA did not have a confident respondent or when it was breaking the tie 

between a primary and secondary response. Follower stimulants do not make random 

responses because they are choosing the response indicated by a tactic. In a Standard-

CLA, these followers would be following the Standard selection policy and selecting 

their responses at random. A sample graph is presented in Figure 15.  
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Figure 15: Sample Graph of the Random Responses.  
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CHAPTER 4: EXPERIMENTS 
 

 

 

 

 

 

4.1 Experiment Design 

This section describes the design of the experiments that are necessary to achieve the 

research objective. These include informal operating point pilots (OP pilots) as well as 

the formal experiments.  

4.1.1 OP Pilots for fixed conditions and parameters 

It was necessary to fix several conditions and parameters in order to limit the scope of the 

research. Informal operating point pilots were conducted to establish these fixed values, 

which are presented in Table 2 below. These OP pilots were necessary to accomplish Goal 

1, described in Section 3.5.  
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Table 2: Parameters and Conditions for the TruthTable OP Pilots 

Category Name Selected Fixed Values 

TruthTable Game conditions 

initial phase: intent (size) 6 

initial phase: extent (size) 6 

secondary phase: intent (size) 6 

secondary phase: extent (size) 300 

game states {1, 2, 3, 6} with lowest TBLα 

(see Section 3.4 for details) 

maximum number of contests per phase 100,000 

Standard CLA parameters 

collection length, c {1, 2, 4, 6, 12} 

reject threshold, κr 95% 

tie threshold, κt 98% 

TBL-CLA parameters 

minimum local potency 1 

Experiment conditions 

number of CLAs per treatment 30 

number of contests between test points 500 

 

All of the TruthTable game conditions are described in Section 3.4.5. The Standard 

CLA parameters are discussed in Section 3.3.4. The TBL-CLA parameter, minimum 

local potency, is described in Section 3.3.6.  

The experiment conditions deserve a little more explanation. Each treatment is run on 

30 independent CLAs which have each been given different seeds for their required 

pseudo-random number generators. Each CLA is presented with 500 contests between 
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test points. A contest consists of a single stimulus. If a CLA reaches 500 contests in the 

middle of the collection length, it completes the collection length and receives its 

evaluation before it begins testing. The periods between test points are known as training 

periods. During test points, learning is “turned off” by withholding evaluation. The CLA 

is presented with the same test set each time. The test set is made up of each input 

repeated 30 times. For example, if the CLA is in the initial phase, it is presented with a 

total of 180 test contests. If the CLA is beyond the initial phase, it is presented with 9000 

test contests. The CLA does not receive any evaluation on the test set although all the 

data from the test set in recorded. Data is recorded during test points 

The data collected during the experiments is presented in Table 3. All data collection 

is done during the test periods. Additionally, all the settings for the factors as well as the 

fixed parameters and conditions are recorded once, as part of the header to the data file. 

In the table below, experimental data from Standard-CLAs include the first two 

categories, while experimental data from TBL-CLAs include all three categories. 
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Table 3: Data collected during experiments at each test point 

Category Data Items 

TruthTable game parameters 
Contest number of each test point 

Standard CLA results 
Score, s 
Selection confidence 
Number of respondents selected at random 

TBL-CLA results 
Number of global tactics 
Number of supporter stimulants 
Number of independent stimulants 
Number of follower stimulants 
Number of seeker stimulants 

 

4.1.2 Organization of Experiments 

In order to accomplish the remaining goals, three canonical experiments are needed. 

The remaining goals are about measuring the performance of a TBL-CLA under different 

environmental conditions: a stationary game with a single target per input, a stationary 

game with two targets per input, and a task-switching game with a single target per input. 

The results from these three experiments can be used for the goals that deal with 

generalized behavior and the goals that deal with the behavior of specific factor 

combinations.  

The following factors are influenced by the TruthTable game conditions and must be 

specified and fixed through informal operating point pilot experiments, known as OP 

pilot experiments, under each set of conditions: the TBL thresholds and the compensation 

threshold.  



 

 125  

4.1.3 Stationary Game, One Target Cell per Input 

This section describes the informal OP Pilots necessary to determine the appropriate 

TBL and compensation thresholds as well as the canonical experiment.  

4.1.3.1 OP Pilot 1: TBL thresholds, Stationary Game, One Target Cell per 
Input 

Informal observation shows that the TBL thresholds dramatically impact the behavior 

of a TBL-CLA; however, the behavior of the TBL-CLA is also affected by the 

environmental conditions of the TruthTable game. It was observed through informal 

pilots that one set of TBL threshold factors was not sufficient to provoke a sufficiently 

wide range of behavior across all game conditions.  

In order to determine the appropriate factor range, the following OP pilot was 

conducted to accomplish Goal 2.1.1 (see Section 3.5). The collection length, c, was fixed 

at 12; the compensation threshold, κγ, was fixed at 60; and the state of the TruthTable 

game was set to state 6 (i.e. there were six target responses in the game; for more detail 

see Section 3.4.5). TBL-CLAs were then trained with the TBL thresholds listed below in 

a Monte Carlo trial (30 iterations). The performance measures were calculated using the 

Monte Carlo trial results of a Standard-CLA under the same game conditions.  
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Table 4: OP Pilot Experiment Design for TBL thresholds 

 

TBL threshold 4-tuples 

number of 

treatments 

OP Pilot  

factors 

<(κs, κw,κi, κd)>  selected from the following set of values, 

subject to the specified constraints: 

{50.00, 51.00, 55.00, 60.00, 65.00, 70.00,  75.00, 80.00, 85.00,  

 90.00, 95.00, 98.00, 99.99}   

4550 

Results  <(κs, κw,κi, κd)>  selected from the following set of values, 

subject to the specified constraints: 

{50.00, 55.00, 70.00, 80.00, 95.00, 99.99} 

266 

 

Note that the number of treatments is not simply the set of all possible 4-tuples that 

could be constructed from the factor values for the TBL thresholds. The TBL thresholds 

are subject to the following constraints: 

•••• The withdrawal threshold must be less than or equal to the support threshold.   

 κw ≤ κs 

•••• The independence threshold must be less than or equal to the support threshold. 

  κi ≤ κs 

•••• The dependence threshold must be less than or equal to the independence 

threshold. 

 κd ≤ κi 

4.1.3.2 OP Pilot 2: Compensation Threshold, κκκκγγγγ, Stationary Game, One 
Target Cell per Input 

Once the TBL threshold factor range was fixed, the following OP pilot was conducted 

to accomplish Goal 2.1.2 (see Section 3.5). One highly successful factors combination, 



 

 127  

one neutral combination, and one unsuccessful combination were selected. Each TBL 

threshold factor combination was applied to a TBL-CLA. Each TBL-CLA then completes 

Monte Carlo trials with different values for κγ. The OP pilot factors and the results are 

shown in Table 5.  

Table 5: OP Pilot Experiment Design for κγ  

OP Pilot factor values for κγ fixed value for κγ 

{50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 98, 99} 50 

4.1.3.3 Experiment 1: Canonical, Stationary Game, One Target Cell per 
Input 

After determining the appropriate factor values for the TBL threshold and the 

compensation threshold, the following experiment is conducted to accomplish Goal 2.1, 

described in Section 3.5. The TruthTable game environment is stationary throughout the 

learning process, that is, the arrangement of target cells never changes, and there is only 

one target cell per input. Below in Table 6 is an experiment block design with all of the 

factors. Both Standard and TBL-CLAs are used. The results from the Standard-CLA are 

used as a baseline for computing the performance measures.  
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Table 6: Design of Experiment 1 (stationary game, 1 target cell per input) 

Factor Name Values Treatments 

TruthTable game state {1, 2, 3, 6} 4 

Collection length, c {1, 2, 4, 6, 12} 5 

TBL thresholds, κ* <(κs, κw,κi, κd)>  selected from the following set 

of values, subject to the specified constraints: 

<50.00, 55.00, 70.00, 80.00, 95.00, 99.99> 

266 

Experiment resource requirements 

Total treatments 5340* 

Estimated time per treatment 2 CPU 

minutes 

Estimated total CPU time required 7.5 CPU days 

Total CPUs available 4 

Estimated time required 2 days 

*  total number of treatments calculated as follows:  

Standard-CLA treatments = 4(5) 

TBL-CLA treatments = 4(5)(266) 

Total = Standard-CLA treatments + TBL-CLA treatments = 5340 
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4.1.3.4 OP Pilot 3: Select factor combinations for close inspection, Stationary 
Game, One Target Cell per Input 

Experiment 1, described in Section, generates sufficient data to accomplish Goal 3.1, 

described in Section 3.5. In this experiment, the behavior of a few specific TBL-CLAs is 

examined more closely.  

Before Goal 3.1 can be accomplished, treatments must be selected for closer 

examination (Goal 3.1.1). An informal OP pilot was conducted in which the results of 

Experiment 1 were analyzed to determine which treatments presented an average case, 

strong case, and a weak case. The following TBL-threshold combinations are considered: 

•••• Strong (70.00, 70.00, 70.00, 70.00) 

•••• Average (99.99, 95.00, 50.00, 50.00) 

•••• Weak (95.00, 95.00, 95.00, 50.00) 

4.1.3.5 Experiment 2: Close inspection, Stationary Game, One Target Cell 
per Input 

Experiment 2 accomplishes Goal 3.1, described in Section 3.5. The calculation of the 

individual performance measures is completed with the use of a spreadsheet, but the 

process of inspecting the results and drawing conclusions about each case requires 

significant time and attention from a person. Table 7 below presents the block design for 

Experiment 2.   
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Table 7: Design for Experiment 2 (close inspection, 1 target cell per input) 

Name Factor values Treatments 

Target responses {1, 2, 3, 6 } 4 

Collection length, c {1, 2, 4, 6, 12 } 5 

TBL threshold 4-tuples 

<(κs, κw,κi, κd)>   

(70.00, 70.00, 70.00, 70.00) 

(99.99, 95.00, 50.00, 50.00) 

(95.00, 95.00, 95.00, 50.00) 

3 

Experiment resource  requirements 

Total treatments 80* 

Estimated time per treatment 10 person-minutes 

Estimated total time required 14 hours 

*  total number of treatments calculated as follows:  

Standard-CLA treatments = 4(5) 

TBL-CLA treatments = 4(5)(3) 

Total = Standard-CLA treatments + TBL-CLA treatments = 80 

 

4.1.4 Stationary Game, Two Target Cells per Input 

This section describes the informal OP Pilots necessary to determine the appropriate 

TBL and compensation thresholds as well as the canonical experiment.  

4.1.4.1 OP Pilot 4: TBL thresholds, Stationary Game, Two Target Cells per 
Input 

In order to determine the appropriate factor range, the following OP pilot was 

conducted in order to accomplish Goal 2.2.1 (see Section 3.5). The collection length, c, 

was fixed at 12; the compensation threshold, κγ, was fixed at 60; and the TruthTable 

game was set to state 6 (i.e. there were six target responses in the game, for more detail 

see Section 3.4.5). TBL-CLAs were then trained with the TBL thresholds listed below in 

a Monte Carlo trial. The performance measures were calculated with Monte Carol trial 
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results of a Standard-CLA under the same game conditions. 

Table 8: OP Pilot Experiment Design for TBL thresholds 

 

TBL threshold 4-tuples 

number of 

treatments 

OP Pilot 

factors 

<(κs, κw,κi, κd)>  selected from the following set of values, 

subject to the specified constraints: 

<50.00, 60.00, 70.00, 80.00, 90.00, 95.00, 98.00, 99.99> 

750 

Results  <(κs, κw,κi, κd)>  selected from the following set of values, 

subject to the specified constraints: 

<50.00, 70.00, 90.00, 95.00, 99.99> 

66 

 

Note that the number of treatments is not simply the set of all possible 4-tuples that 

could be constructed from the factor values for the TBL thresholds. The TBL thresholds 

are subject to the following constraints: 

•••• The withdrawal threshold must be less than or equal to the support threshold.   

 κw ≤ κs 

•••• The independence threshold must be less than or equal to the support threshold. 

  κi ≤ κs 

•••• The dependence threshold must be less than or equal to the independence 

threshold. 

  κd ≤ κi 

4.1.4.2 OP Pilot 5: Compensation Threshold, κκκκγγγγ, Stationary Game, Two 
Target Cells per Input 

Once the TBL threshold factor range was fixed, the following OP pilot was conducted 



 

 132  

to accomplish Goal 2.1.2 (see Section 3.5). One highly successful factor combination, 

one neutral combination, and one unsuccessful combination were selected. Each TBL 

threshold factor combination was applied to a TBL-CLA. Each TBL-CLA then 

completed Monte Carlo trials with different values for κγ. The OP pilot factors and the 

results are shown in Table 9.  

Table 9: OP Pilot Experiment Design for κγ  

OP pilot factor values for κγ  fixed value for κγ 

{50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 98, 99} 50 

4.1.4.3 Experiment 3: Canonical, Stationary Game, Two Target Cells per 
Input 

After determining the appropriate factor values for the TBL threshold and the 

compensation threshold, the following experiment is conducted. The TruthTable game 

environment is stationary throughout the learning process; that is, the arrangement of 

target cells never changes, and there is only one target cell per input. Below in Table 10 

is an experiment block design with all of the factors. Both Standard and TBL-CLAs are 

used. The results from the Standard-CLA are used as a baseline for computing the 

performance measures.  

  



 

 133  

Table 10: Design for Experiment 3 (canonical, stable game, 2 target cells per input) 

Name Factor values Treatments 

Target responses {1, 2, 3, 6 } 4 

Collection length, c {1, 2, 4, 6, 12 } 5 

TBL thresholds, κ* <(κs, κw,κi, κd)>  selected from the following set of 

values, subject to the specified constraints: 

<50.00, 70.00, 90.00, 95.00, 99.99> 

66 

Experiment resource requirements 

Total treatments 1340* 

Estimated time per treatment 2 CPU minutes 

Estimated total CPU time required 1.9 CPU days 

Total CPUs available 4 

Estimated total time required 1 day 

*  total number of treatments calculated as follows:  

Standard-CLA treatments = 4(5) 

TBL-CLA treatments = 4(5)(66) 

Total = Standard-CLA treatments + TBL-CLA treatments = 1340 
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4.1.4.4 OP Pilot 6: Select factor combinations for close inspection, Stationary 
Game, Two Target Cells per Input 

Experiment 3 generates sufficient data to accomplish Goal 3.2, described in Section 

3.5. In this experiment, the behavior of a few, specific TBL-CLAs is examined more 

closely.  

Before Goal 3.2 can be accomplished, treatments must be selected for closer 

examination (Goal 3.2.1). An informal OP pilot was conducted in which the results of 

Experiment 1 were analyzed to determine which treatments presented an average case, 

strong case, and a weak case. The following TBL-threshold combinations are considered: 

•••• Strong (70.00, 70.00, 70.00, 50.00) 

•••• Average (99.99, 99.99, 99.99, 99.99) 

•••• Weak (99.99, 50.00, 50.00, 50.00) 

 

4.1.4.5 Experiment 4: Close inspection, Stationary Game, Two Target Cells 
per Input 

Experiment 4 accomplishes Goal 3.2, described in Section 3.5. The calculation of the 

individual performance measures is completed with the use of a spreadsheet, but the 

process of inspecting the results and drawing conclusions about each case requires 

significant attention for a person.  
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Table 11 below presents the block design for Experiment 4.  

 

 

 

 

 

Table 11: Design for Experiment 4 (close inspection, stationary game, two target cells per input) 

Name Factor values Treatments 

TruthTable game states {1, 2, 3, 6 } 4 

Collection length, c {1, 2, 4, 6, 12 } 5 

TBL threshold 4-tuples 

<(κs, κw,κi, κd)>   

(70.00, 70.00, 70.00, 70.00) 

(99.99, 99.99, 99.99, 99.99) 

(99.99, 50.00, 50.00, 50.00) 

3 

Experiment resource requirements 

Total treatments 80* 

Estimated time per treatment 10 person-minutes 

Estimated time required 14 hours 

*  total number of treatments calculated as follows:  
Standard-CLA treatments = 4(5) 

TBL-CLA treatments = 4(5)(3) 
Total = Standard-CLA treatments + TBL-CLA treatments = 80 
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4.1.5 Task-switching Game, One Target Cell per Input 

This section describes the informal OP Pilots necessary to determine the appropriate 

TBL and compensation thresholds as well as the canonical experiment. It also describes 

how a task-switching game in played.  

 

 

4.1.5.1 A task-switching TruthTable game 

The task-switching game with only one target cell per input is played exactly like the 

game described for Experiment 1, described above. The CLA trains in the initial phase on 

a 6-by-6 substage of the game until its confident accuracy is > 99.99% or it has trained 

for 100,000 contests, whichever happens first. Then, the game enters the secondary phase 

and extends out to the full 6-by-300 stage. The CLA continues to train until its confident 

accuracy is again >99.99% or until it has trained for 100,000 contests. In Experiments 1 

through 4, CLAs only trained through the secondary phase, but in the remaining 

experiments, the CLAs trains for another, tertiary phase.  

During the tertiary phase, the game changes partially as some of the target cells are 

reassigned to different outputs. Table 12 below shows the changes that occur in the 

tertiary phase. The Standard-CLA is only affected by the number of inputs which are 

reassigned to new target cells, but the TBL-CLA is also affected by the change in TBLα.  
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Table 12: Tertiary Phases of the TruthTable game 

Stage Secondary Phase Tertiary Phase 

1 

secondary TBLα = 89,700 tertiary TBLα = 44,700 

∆ 50% target responses 

∆ -45,000 TBLα 

2 

secondary TBLα = 44,700 tertiary TBLα = 29,700 

∆ 50% target responses 

∆ -15,000 TBLα 

3 

tertiary TBLα = 29,700 tertiary TBLα = 14,700 

∆ 66.6% target responses 

∆ -15,000 TBLα 

6 

tertiary TBLα = 14,700 
tertiary TBLα = 89,700 

∆ 83.3% target responses 

∆ +75,000 TBLα 

654321 654321

654321 654321

654321

654321

654321

654321
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4.1.5.2 OP Pilot 7: TBL thresholds, Task-Switching Game, One Target Cell 
per Input 

In order to determine the appropriate factor range, the following OP pilot was 

conducted in order to accomplish Goal 2.3.1 (see Section 3.5). The collection length, c, 

was fixed at 12; the compensation threshold, κγ, was fixed at 60; and the TruthTable 

game was set to state 6 (i.e. there were six target responses in the game, for more detail 

see Section 3.4.5). TBL-CLAs were then trained with the TBL thresholds listed below in 

a Monte Carlo trial. The performance measures were calculated with Monte Carol trial 

results of a Standard-CLA under the same game conditions. 

Table 13: OP Pilot Experiment Design for TBL thresholds 

 
TBL threshold 4-tuples 

number of 
treatments 

OP Pilot 

factors 

<(κs, κw,κi, κd)>  selected from the following set of values, 

subject to the specified constraints: 

{50.00, 60.00, 70.00, 80.00, 90.00, 95.00, 98.00, 99.99} 

750 

Results 
<(κs, κw,κi, κd)>  selected from the following set of values, 

subject to the specified constraints: 

{50.00, 70.00, 90.00, 98.00, 99.99} 

66 

 

Note that the number of treatments is not simply the factorial of the number of factors 

for the TBL threshold. The TBL thresholds are subject to the following constraints: 

•••• The withdrawal threshold must be less than or equal to the support threshold.   

 κw ≤ κs 

•••• The independence threshold must be less than or equal to the support threshold. 

  κi ≤ κs 
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•••• The dependence threshold must be less than or equal to the independence 

threshold. 

  κd ≤ κi 

4.1.5.3 OP Pilot 8: Compensation Threshold, κκκκγγγγ, Task-Switching Game, One 
Target Cell per Input 

Once the TBL threshold factor range was fixed, the following OP pilot was conducted 

to accomplish Goal 2.3.2 (see Section 3.5). One highly successful factor combination, 

one neutral combination, and one unsuccessful combination were selected. Each TBL 

threshold factor combination was applied to a TBL-CLA. Each TBL-CLA then completes 

Monte Carlo trials with different values for κγ. The OP pilot factors and the results are 

shown in Table 14. The results of this pilot were interesting because the TBL-CLA was 

much more sensitive to the settings for κγ than the other pilots.  

Table 14: OP Pilot Experiment Design for κγ  

OP pilot factor values for κγ  fixed value for κγ 

{50, 55, 60, 65, 70, 75, 80, 85, 90, 94, 95, 95.5, 96, 96.5, 97 98, 99} 96 

4.1.5.4 Experiment 5: Canonical, Task-switching Game, One Target Cell per 
Input 

After determining the appropriate factor values for the TBL threshold and the 

compensation threshold, the following experiment is conducted. The TruthTable game 

environment is not stationary throughout the learning process, that is, the arrangement of 

target cells changes after the secondary phase of the game, and there is only one target 

cell per input. Below in Table 15 is an experiment block design with all of the factors. 
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Both Standard and TBL-CLAs are used. The results from the Standard-CLA are used as a 

baseline for computing the performance measures.  

Table 15: Design for Experiment 5 (canonical, task-switching game, 1 target cell per input) 

Name Factor values Treatments 

Target responses {1, 2, 3, 6 } 4 

Collection length, 

c 

{1, 2, 4, 6, 12 } 5 

TBL thresholds, κ* <(κs, κw,κi, κd)>  selected from the following set of 

values, subject to the specified constraints: 

<50.00, 70.00, 90.00, 98.00, 99.99> 

66 

Experiment resource requirements 

Total treatments 1340* 

Estimated time per treatment 8 CPU minutes 

Estimated total CPU time required 7.5 CPU days 

Total CPUs available 4 

Estimated time required 2 days 

*  total number of treatments calculated as follows:  

Standard-CLA treatments = 4(5) 

TBL-CLA treatments = 4(5)(66) 

Total = Standard-CLA treatments + TBL-CLA treatments = 1340 

 

 

4.1.5.5 OP Pilot 9: Select factor combinations for close inspection, Task-
switching Game, One Target Cell per Input 

Experiment 5, described in the previous section, generates sufficient data to 

accomplish Goal 3.3, described in Section 3.5. In this experiment, the behavior of a few 

specific TBL-CLAs is examined more closely.  

Before Goal 3.3 can be accomplished, treatments must be selected for closer 

examination (Goal 3.3.1). An informal OP pilot was conducted in which the results of 



 

 141  

Experiment 5 were analyzed to determine which treatments presented an average case, 

strong case, and a weak case. It was determined that the variances in behavior that 

occurred with the changes in the number of target responses and collection length were 

worth investigating at all settings. The following TBL threshold combinations are 

considered: 
•••• Strong (90.00, 90.00, 90.00, 70.00) 
•••• Average (99.99, 99.99, 70.00, 70.00) 

•••• Weak (99.99, 50.00, 50.00, 50.00) 

4.1.5.6 Experiment 6: Close Inspection, Task-switching Game, One Target 
Cell per Input 

Experiment 6 accomplishes Goal 3.3, described in Section 3.5. The calculation of the 

individual performance measures is completed with the use of a spreadsheet, but the 

process of inspecting the results and drawing conclusions about each case requires 

significant attention from a person. Table 16 below presents the block design for 

Experiment 6.  
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Table 16: Design for Experiment 6 

Name Factor values Treatments 

TruthTable game states {1, 2, 3, 6 } 4 

Collection length, c {1, 2, 4, 6, 12} 5 

TBL threshold 4-tuples 

<(κs, κw,κi, κd)>   

(90.00, 90.00, 90.00, 70.00) 

(99.99, 99.99, 70.00, 70.00) 

(99.99, 50.00, 50.00. 50.00) 

3 

Experiment Resource Requirements 

Total treatments 80* 

Estimated time per treatment 10 person-minutes 

Total time required 14 person hours 

*  total number of treatments calculated as follows:  

Standard-CLA treatments = 4(5) 

TBL-CLA treatments = 4(5)(3) 

Total = Standard-CLA treatments + TBL-CLA treatments = 80 

 

4.2 Experimentation & Reduced Results 

The solution for this research is entirely software-based. All code was written and 

compiled in Java. Full code listings are available in the Digital Appendix.  The 

experiments were run on an Apple MacPro Quad-Core computer. The results were 

analyzed using Microsoft Excel 2004 and Microsoft Excel 2007. The reduced results are 

available in the digital appendices as Microsoft Excel files. 
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CHAPTER 5: RESULTS AND CONCLUSIONS 
 

 

 

 

 

5.1 Introduction 

This chapter presents the results and conclusions of this research along with informal 

observations and suggestions for future work. The results and formal conclusions of each 

experiment are presented together in Sections 5.2 through 5.5.5. The informal 

observations about all of the experiments are presented in Section 5.8. Finally, 

suggestions for future work are presented and discussed in Section 5.9.  

5.2 Experiment 1 

Experiment 1 is a canonical experiment. The TruthTable game environment is 

stationary throughout the learning process, that is, the arrangement of target cells does 

not change during training, and there is only one target cell per input. Below in Table 6 

taken from Section 4.1.3.3, is the experiment block design with all of the factors. Both 

Standard and TBL-CLAs are used. The results from the Standard-CLA are used as a 

baseline for computing the performance measures.  
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Table 6: Design of Experiment 1 (stationary game, 1 target cell per input) 

Factor Name Values Treatments 

TruthTable game state {1, 2, 3, 6} 4 

Collection length, c {1, 2, 4, 6, 12} 5 

TBL thresholds, κ* <(κs, κw,κi, κd)>  selected from the following set 

of values, subject to the specified constraints: 

<50.00, 55.00, 70.00, 80.00, 95.00, 99.99> 

266 

Experiment resource requirements 

Total treatments 5340* 

Estimated time per treatment 2 CPU minutes 

Estimated total CPU time required 7.5 CPU days 

Total CPUs available 4 

Estimated time required 2 days 

total number of treatments calculated as follows:  

Standard-CLA treatments = 4(5) 

TBL-CLA treatments = 4(5)(266) 

Total = Standard-CLA treatments + TBL-CLA treatments = 5340 

 

 

5.2.1 Results 
The results are presented in footprints in this section and have been sized to fit a 

single page. In many cases, this limits the legibility of the data labels. The footprints are 
intended to give an overview of trends in behavior and performance as the factors are 
varied. Each performance measure has a unique dynamic range, but they are all presented 
in the same color range (red to green). Because the footprints are used to visualize trends, 
the exact values are not as important. Bright green is always used for results that favor 
the TBL-CLA and bright red for those that favor the Standard-CLA. The footprints are 
also presented at a legible resolution with individual color scale information over several 
pages in the following appendices: APPENDIX A: EXPERIMENT 1, PAYOFF RESULTS; 
APPENDIX B: EXPERIMENT 1, EXPENSE RESULTS; and  
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APPENDIX C: EXPERIMENT 1 N-TILE ADVANTAGE RESULTS. 

Table 17 shows the results of Experiment 1 sorted by the TBL thresholds. Section 

3.6.4 describes the layout of the footprint in greater detail, but briefly, the columns and 

rows are organized in a hierarchical fashion.  

The columns are divided first by the performance metric: Payoff, then Expense, then 

n-tile advantage.  Within each performance metric, the columns are subdivided by 

collection length. Finally, within each collection length, the columns are again subdivided 

by the TruthTable game state, which corresponds to the number of target outputs in each 

game state. 

The rows are organized hierarchically by TBL thresholds. The thresholds are 

presented in the following order, from left to right: 
Support threshold, κs 

Withdrawal threshold, κw 

Independence threshold, κi 

Dependence threshold, κd 

The factor values for the TBL thresholds are presented from smallest to largest, 

according to the following rules: 
The withdrawal threshold must be less than or equal to the support threshold.   

 κw ≤ κs 

The independence threshold must be less than or equal to the support threshold. 

  κi ≤ κs 

The dependence threshold must be less than or equal to the independence threshold. 

  κd ≤ κi 
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Turning to the results in Table 17, it can be seen that the TBL thresholds do affect the 

performance of a TBL-CLA. The footprint can be divided into 2 major sections by 

looking at Payoff and n-tile advantage. In approximately the top third of the footprint, the 

Payoff is generally very high and the TBL-CLA has a clear advantage through the first 

70% of the first termination. In general, the performance measures in the bottom two 

thirds of the footprint are very similar.  

Another observation that can be drawn from the footprint in Table 17 is that the TBL-

CLA performs exceptionally well in all cases for a collection length of one.  A collection 

length of one is a trivial case, but it is included for completeness. At a collection length of 

one, the optimal strategy is a simple process of elimination because the CLA receives an 

evaluation on it responses individually rather than collectively. A second, less trivial 

observation is that the TBL-CLA does consistently well in all TruthTable games in state 

1, where there is only one target response (see Section 3.4.5 for more details). This means 

that the TBL-CLA’s performance is correlated with the TBLα of the TruthTable game 

state. That is, the greater the TBL advantage, the better the TBL-CLA’s performance.  

In order to draw more specific observations about the performance of a TBL-CLA, it 

is necessary to reorder the footprint and examine smaller subsections of it. In order to 

identify those TBL threshold 4-tuples that are most effective, the results are sorted by the 

minimum Payoff value in each row. The resorted footprint is presented in Table 18. The 

TBL 4-tuples with a minimum Payoff greater than zero are shown in the blue square. 

There is not much new information to be gained from this view of the results. A closer 

view of the data is needed. Table 19 presents the top results from Table 18. 
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Table 17: Results of Experiment 1 sorted by TBL thresholds. The varying collection lengths and the TruthTable game 

state are the column headers. The TBL thresholds are the row headers. The thresholds are sorted from smallest to 

largest factors values in the following order, according to the rules for TBL thresholds: support threshold, withdrawal 

threshold, independence threshold, and dependence threshold. 
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Table 18: Results of Experiment 1 sorted by minimum Payoff. The results have been reordered by the minimum 

Payoff value in each row. The results in the blue square are those results with a minimum Payoff value greater than 

zero. 



 

 

Table 19: Good Results from Experiment 1 sorted by Payoff and Expense. 

minimum Payoff. They were then separated into two groups at a minimum Payoff of 10.0 and resorted by 

maximum Expense. The results then fell into groups based on the value of the support threshold.
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: Good Results from Experiment 1 sorted by Payoff and Expense. The good results were first sorted by 

. They were then separated into two groups at a minimum Payoff of 10.0 and resorted by 

. The results then fell into groups based on the value of the support threshold.

 

The good results were first sorted by 

. They were then separated into two groups at a minimum Payoff of 10.0 and resorted by 

. The results then fell into groups based on the value of the support threshold. 
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The results presented in Table 19 are first sorted by minimum Payoff. There is a clear 

break in the distribution of minimum Payoff measures at 10.0, so the data is spilt into two 

groups. Each of the groups is internally sorted by the maximum Expense. The sorted data 

falls into three distinct groups, each governed by the support threshold. The best overall 

performing TBL 4-tuples were those with a support threshold of 70%. The Expense is 

lowest in the 4-tuple (70, 70, 70, 70) and increased as the withdrawal threshold is 

lowered. When the support threshold is set to 80%, both the minimum Payoff and the 

maximum Expense drop slightly. This means that there is the option of trading some 

Payoff for a lower Expense, if that is a concern. The last grouping is the 4-tuples with the 

support threshold of 55%. These 4-tuples have higher minimum Payoff values, but also 

higher Expense values and lower n-tile advantages in the latter n-tiles.  

For best performance, the support, withdrawal, and independence thresholds should 

be set equal to each other and at lower values (between 70% and 80%), but not too low 

(less than 70%). Setting the support threshold low, but not too low, allows tactics to be 

supported early on and setting the withdrawal threshold low allows tactics to stay on the 

global list. A potential drawback to low support thresholds is that it forces stimulants into 

the independent role before they have gained the full benefit of following a tactic. This is 

why it is best to set the independence threshold as high as possible. However, having a 

low independence threshold also helps the TBL-CLA avoid harsh and confusing updates 

from the compensation policy.  

Recall that the compensation policy relies on the CLA’s anticipated evaluation which 

is calculated based on the number of confident stimulants in the history (stimulants 

whose tie and reject confidences are sufficiently high to all them to consistently select 

their primary respondent) and the number of follower stimulants. It is possible for a 
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follower to receive a very positive update one time and a very negative one the next, 

especially at longer collection lengths. This phenomenon adds noise to the signal. It is 

important to balance the benefits of receiving “unearned” positive updates with the overly 

harsh updates that come at the cost of occasionally inconsistent and harsh negative ones.  

The remaining data not presented in Table 19 was sorted by Expense. The 4-tuples 

with higher support and withdrawal threshold values and very low independence and 

dependence values produced results that indicate that the TBL-CLA’s performance is not 

distinguishable from the Standard-CLA’s performance.  This is a reasonable outcome 

because it follows that if stimulants are not allowed to be followers for very long, if at all, 

they will spend the bulk of their life cycles following the Standard selection policy. Table 

20 shows the neutral results.  

The remaining results that have not been discussed in detail are those 4-tuples which 

perform just slightly worse than the Standard-CLA. A small selection of these results is 

presented in Table 21. Note that even these cases show early gains over the Standard-

CLA, though they fall behind in the later n-tiles.  

The footprint results are only useful for analyzing the trends in the data. For a more 

detailed study, but with a limited cover, Experiment 2 examines the learning behavior of 

three 4-tuples in detail. 
 

 

 

 

 

 



 

 

Table 20: Neutral Results for Experiment 1 sorted by Expense. 

thresholds very low and keeping the support and withdrawal thresholds high, the TBL

CLA. 
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: Neutral Results for Experiment 1 sorted by Expense. By setting the independence and dependence 

thresholds very low and keeping the support and withdrawal thresholds high, the TBL-CLA performs 

 

By setting the independence and dependence 

CLA performs like a Standard-



 

 

Table 21: Underperforming Results for Experiment 1 sorted by Expense. 

underperforming TBL-CLAs. This table presents only a subset of the full results.
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: Underperforming Results for Experiment 1 sorted by Expense. Most of the TBL 4-tuples produce slightly 

CLAs. This table presents only a subset of the full results. 

 

tuples produce slightly 
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5.2.2 Formal Conclusions from Experiment 1 

A summary of the conclusions drawn from Experiment 1 is presented in this section. 

For a more detailed discussion of these conclusions, see the previous section. All 

conclusions presented in this section are only valid for the TruthTable game in an 

environment with one target per output and that is stationary, deterministic, and correct 

for the duration of the learning process. Informal conclusions, speculations, and 

predictions about the performance of the application of TBL to other games, including 

actual-life games, will be presented and discussed in Section 5.8. Suggestions for future 

research are presented and discussed in Section 5.9.  

Conclusion 1: The learning behavior of a TBL-CLA is significantly affected by 

the settings of the TBL thresholds.  

Conclusion 1a: For best performance, set the support, withdrawal, and 

independence thresholds equal to each other and at values that 

are between 70 and 80%.  

Conclusion 1b: A TBL-CLA will behave like a Standard-CLA when the 

support and withdrawal thresholds are set high, greater than 

90%, and the independence and dependence thresholds are set at 

or near the minimum (less than or equal to 55%). 

Conclusion 1c: Even in 4-tuples that do not produce optimal or Standard-like 

behavior, using TBL provides significant advantages early in the 

learning process; however, the advantages are lost later on as the 

TBL-CLA significantly underperforms compared to the 

Standard-CLA.  
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Conclusion 2: TBL-CLA performance improves as the TBL advantage, TBLα, of 

the TruthTable game state is increased.  

5.3 Experiment 2 

Experiment 2 accomplishes Goal 3.1, described in Section 3.5, a close inspection of 

the behavior of a small selection of 4-tuples from Experiment 1. Table 7 below, taken 

from Section 4.1.3.5, presents the block design for Experiment 2.  

Table 7: Design for Experiment 2 (close inspection, 1 target cell per input) [from Section 4.1.3.5] 

Name Factor values Treatments 

Target responses {1, 2, 3, 6 } 4 

Collection length, c {1, 2, 4, 6, 12 } 5 

TBL threshold 4-tuples 

<(κs, κw,κi, κd)>   

(70.00, 70.00, 70.00, 70.00) 

(99.99, 95.00, 50.00, 50.00) 

(95.00, 95.00, 95.00, 50.00) 

3 

Experiment resource  requirements 

Total treatments 80* 

Estimated time per treatment 10 person-minutes 

Estimated total time required 14 hours 

*  total number of treatments calculated as follows:  

Standard-CLA treatments = 4(5) 

TBL-CLA treatments = 4(5)(3) 

Total = Standard-CLA treatments + TBL-CLA treatments = 80 

 

 

5.3.1 Results 

This section presents selected results from Experiment 2. The full set of reduced 

results is available in the digital appendices as interactive Microsoft Excel spreadsheets. 
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5.3.2 Best Performance: 4-tuple (κs=70, κw=70, κi=70, κd=70) 

It was observed in Experiment 1 that the 4-tuple of (70, 70, 70, 70) was the best 

performing combination of TBL thresholds. The results of close inspection of the 

behavior of a TBL-CLA with these settings are presented in this section. As the TBL 

thresholds are fixed, the purpose of this experiment is to understand the influence that the 

thresholds have on the behavior of the CLA under varying environmental conditions: the 

collection length and the TruthTable game state. 

5.3.2.1 TruthTable state 1, Collection Length 6 

In Experiment 1, the TBL-CLA generally dominated the Standard-CLA in 

TruthTable game state 1 (see Section 3.4.5 for a description of the game state). A closer 

inspection of the CLAs performance on TruthTable game state 1 with a collection length 

of 6 is presented in Figure 16, Figure 17, and Figure 18 below.  

Figure 16: The TBL-CLA dominates the Standard-CLA on TruthTable game state 1. The dashed line marks the first 

termination. The Payoff and Expense measures for this treatment are given in the lower right hand corner. 
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The TBL-CLA dramatically outperforms the Standard-CLA on the TruthTable game 

state 1, with a Payoff of 81.7 and an Expense of -26,500. Figure 16 demonstrates how the 

TBL-CLA is able to quickly identify effective tactics and take advantage of those tactics. 

Of course, if there is only one target response in the game, then there only need be one 

tactic. Figure 18 shows that the TBL-CLA makes significantly fewer random selections 

during its learning process. There is a large spike in the number of random selections for 

the TBL-CLA, but this can be explained by recalling that the support threshold is set at 

70. This means that stimulants are able to support a tactic even before they are 

consistently selecting that respondent themselves. In order to be considered a non-random 

selection, a stimulant must be a confident stimulant or a follower. Figure 17 shows that 

several stimulants are indeed supporters before they are confident stimulants, but that this 

spike in the number of random selections does not hinder the learning process. 
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Figure 18: The TBL-CLA makes significantly fewer random selections than the Standard-CLA. 

Figure 17: The TBL-CLA makes heavy use of tactics to quickly reach termination. 
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5.3.2.2 TruthTable state 2, Collection Length 6 

When the number of target responses in a TruthTable game state increases, the 

Tactic-Based Learning advantage, TBLα, decreases (see Section 3.4.5). Figure 19 shows 

that as the TBLα decreases, so does the performance of the TBL-CLA. When the 

TruthTable game state includes two target responses, the TBL-CLA still outperforms the 

Standard-CLA for most of the learning process, but the TBL-CLA gains, while still 

significant, are not nearly as large as they were in state 1.  

Having more than one target response in the game makes it harder for the TBL-CLA 

to identify effective tactics. Recall that a local tactic’s potency is the average of the 

update values that have been received while using the tactic. When the local potency 

drops below the minimum potency threshold, the local tactic is no longer considered 

effective. It is possible for a stimulant to incorrectly deem a local tactic ineffective and 

revert to the Standard selection policy. This means that overall, there are more seeker 

stimulants in the STM than there are when the TruthTable game state has only one target 

response (see Figure 20).  
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Figure 19: The TBL-CLA’s score is significantly better than the Standard-CLA’s score. 

Figure 20: With two target responses and a lower TBLα, the TBL-CLA is not able to use tactics as long as it can for 

a game with only one target response. 



 

 161  

5.3.2.3 TruthTable state 3, Collection Length 12 

The conditions of TruthTable state 3 and collection length 12 were chosen because 

they demonstrate the way in which using TBL can be beneficial with a longer collection 

length. The longer the collection length means that there is a lower the signal-to-noise 

ratio, which slows the rate of learning for both CLAs. The TBL-CLA shows a clear 

advantage in the early contests (Figure 21). It ends in a tie with the Standard-CLA, but 

the early significant advantages are large enough for the TBL-CLA to earn a Payoff of 

11.6 for this treatment and incur and Expense of only 5500 contests.   

The improvement of the TBL-CLA’s scores is caused by the fact that a fraction of the 

stimulants are able to remain followers throughout the learning process (shown in Figure 

22). The TBL-CLA makes fewer random selections for most of the learning process 

(shown in Figure 23). 

Figure 21: With a collection length of 12, the TBL-CLA earns a significantly higher score than the Standard-CLA 

for most of its learning process. 
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Figure 23: A fraction of the stimulants are able to remain followers throughout most of the learning process, 

which supports the TBL-CLA’s score. 

Figure 22: The TBL-CLA is able to maintain the use of tactics throughout the learning process and therefore the 

number of random selections made by the TBL-CLA is significantly lower that the Standard-CLA. 
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5.3.2.4 TruthTable state 6, Collection Length 4 

This treatment is included to demonstrate that even a few follower stimulants early in 

the learning process can have a lasting and improving effect on learning behavior. Figure 

24 shows the consistent and significant improvement in scores by the TBL-CLA. Figure 

25 shows that only a small number of follower stimulants is ever in the STM and that 

those stimulants only appear early in the learning process. Finally, Figure 26 shows a 

corresponding reduction in the number of stimulants selecting their respondents at 

random.  
 

Figure 24: The TBL-CLA earns a consistently higher score than the Standard-CLA during learning. 
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Figure 26: The early use of tactics significantly and consistently reduces the number of stimulants that select 

respondents at random. 

Figure 25: There are only a few follower stimulants and these only exist early on in the learning process, but, 

this is enough of a boost to the TBL-CLA that is score significantly higher than the Standard-CLA. 
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5.3.3 Neutral Performance: 4-tuple (κs=99.99, κw=95, κi=50, κd=50) 

It was observed in Experiment 1 that the 4-tuple of (99.99, 95, 50, 50) was a neutral 

performing combination of TBL thresholds. The results of close inspection of the 

behavior of a TBL-CLA with these settings are presented in this section. As the TBL 

thresholds are fixed, the purpose of this experiment is to understand the influence that the 

thresholds have on the behavior of the TBL-CLA under varying environmental 

conditions, namely the collection length and the TruthTable game state. Since the 

behavior of the TBL-CLA was nearly identical to that of the Standard-CLA, only one 

example will be discussed in this section. The example presented below has all of the 

attributes of the observed behavior of this 4-tuple.  

5.3.3.1 TruthTable state 3, Collection Length 12 

The TBL-CLA starts the learning process with a significant advantage which quickly 

disappears (see Figure 27). This early advantage may seem counterintuitive, as the 

independence threshold is set to the minimum possible value (i.e. there should be no 

follower stimulants in the STM ever) and the TBL-CLA and the Standard-CLA both start 

the secondary phase with the same level of mastery of the initial phase. Also note in 

Figure 28 that there are a large number of independent stimulants, but no followers. This 

also seems unusual as the setting of the independence threshold suggests an absence of 

independent stimulants.  

Recall that an independent stimulant is a stimulant that has a selection confidence 

greater than the independence threshold and that has at least one effective tactic. While 

all stimulants will have a selection confidence greater than the independence threshold as 

soon as they receive their first update, they must also seek out an effective tactic before 

they can be classified as independent. This implies that all the new stimulants introduced 
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in the secondary phase of the game must be followers for at least one stage (i.e. one 

evaluation). As soon as the follower identifies an effective tactic, it immediately 

abandons it and becomes independent. This can all happen in the contests between the 

test points so that even though the follower stimulants are not recorded in the test points, 

the effects of having made several correct responses early on is seen at the first few test 

points. Once the stimulants have either found an effective tactic and become independent 

or tried all the global tactics and have found them to be ineffective, all the stimulants in 

the TBL-CLA are following the Standard selection policy and the TBL-CLA’s behavior 

mimics that of the Standard-CLA. This is also born out in Figure 29, which shows that 

the TBL-CLA and the Standard-CLA make that same number of random selections 

during the learning process. 

Figure 27: Despite a significant advantage during the very first contests, the TBL-CLA’s learning behavior quickly 

become indistinguishable from the Standard-CLA’s behavior. 
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Figure 29: The TBL-CLA does not have any follower stimulants and so it makes the same amount of random 

selections as the Standard-CLA. 

Figure 28: The TBL-CLA does not have any follower stimulants, which accounts for the fact that the TBL-CLA 

behaves like a Standard-CLA. 
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5.3.4 Poor Performance: 4-tuple (κs=95, κw=95, κi=95, κd=50) 

Many of the 4-tuples from Experiment 1 produced TBL-CLAs that slightly 

underperformed when compared to a Standard-CLA. One such 4-tuple, (95, 95, 95, 50), 

is discussed in this section. The poor performing 4-tuples did not always do worse than 

the Standard-CLA, which makes the potentially even more hazardous than a 4-tuple that 

produced consistently poor performance. These poor performing 4-tuples can produce 

behavior that is similar to the best 4-tuples, or similar to the neutral 4-tuples, or behavior 

that is very unstable. These three cases are presented below. 

5.3.4.1 TruthTable state 3, Collection Length 2 

At shorter collection lengths, the TBL-CLA is able to perform in much the same way 

as the best 4-tuples (see Figure 30, Figure 31, and Figure 32). While this shows that TBL 

makes good use of the information provided in situations with a low signal-to-noise ratio, 

this is not a particularly useful benefit because learning is very easy in these situations.  

Figure 30: With a short collection length, the TBL-CLA can do significantly better then the Standard-CLA in early 

learning. 
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The early gains in learning come from the large number of follower stimulants that 

exist in the STM. When the support and independence thresholds are equal, it is not 

possible for a stimulant to ever be independent. In environments where there is only a 

single target response for each stimulus, this is advantageous because there is nothing to 

be gained from exploring the response range once an effective tactic is found; there are 

no other correct responses to be found. 

 

 

Figure 31: The TBL threshold settings allow the CLA to use effective tactics for a longer period of time. When the 

support and independence thresholds are equal, stimulants never become independent. Followers use their 

effective tactics until they become supporters.  
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5.3.4.2 TruthTable state 3, Collection Length 6 

While the 4-tuple shows promise at a collection length of 2 contests, it causes a TBL-

CLA to perform just like the neutral 4-tuples when the collection length is extended to 6 

contests. The behavior shown in Figure 33 and Figure 35 is very similar to the behavior 

seen in the neutral performing TBL-CLA in Section 5.3.3.1.  

As the collection length gets longer, the TBL-CLA is more likely to generate harsh 

update values early on. Recall that the compensation threshold was set to 50% for 

Experiments 1 and 2. This means that any time a follower stimulant that has found an 

effect tactic is in a history with a follower of an ineffective tactic, it generates a punitive 

update value. This can discourage the use of tactics and soon most stimulants become 

seekers and use the Standard selection policy. This behavior is shown in Figure 34. 

Figure 32: The TBL-CLA has many follower stimulants and therefore has significantly fewer stimulants that make 

random selections than the Standard-CLA. 
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Figure 34: The TBL-CLA uses some follower stimulants early on, which account for the slight, but significant, 

advantage it has over the Standard-CLA. 

Figure 33: At a longer collection length, the TBL-CLA reverts to neutral performance under these 4-tuple settings.
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5.3.5 Formal Conclusions from Experiment 2 

A summary of the conclusions drawn from Experiment 2 is presented in this section. 

For a more detailed discussion of these conclusions, see the previous section. All 

conclusions presented in this section are only valid for the TruthTable game in an 

environment with one target per output and that is stationary, deterministic, and correct 

for the duration of the learning process. In formal conclusions, speculations, and 

predictions about the performance of the application of TBL to other games, including 

actual-life games, will be presented and discussed in Section 5.8. Suggestions for future 

research are presented and discussed in Section 5.9.  

Conclusion 1: The learning behavior of a TBL-CLA is significantly affected by the 

settings of the TBL thresholds. (Conclusion 1 from Experiment 1) 

Figure 35: The TBL-CLA has a similar number of stimulants making random selection as the Standard-CLA. 
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Conclusion 1d: In an environment with only one target response per input, 

there is no need for independent stimulants because there is no 

alternate response which could provide positive evaluations; 

therefore, a TBL-CLA performance improves when the 

independent role is removed by setting the support and 

independence thresholds equal to each other. 

Conclusion 3: When the TBL thresholds are set for good performance, the TBL-CLA 

has significantly fewer stimulants that make random selections than 

the Standard-CLA, meeting one of the performance criteria for this 

research. 

Conclusion 4: Only a small percentage of the total stimulants need be follower 

stimulants for a TBL-CLA to perform significantly better than a 

Standard-CLA. 

 

5.4 Experiment 3 

Experiment 3 is a canonical experiment. The TruthTable game environment is 

stationary throughout the learning process, that is, the arrangement of target cells never 

changes, and there are two target cells per input. Below in Table 10, taken from Section 

4.1.4.3, is the experiment block design with all of the factors. Both Standard and TBL-

CLAs are used. The results from the Standard-CLA are used as a baseline for computing 

the performance measures.  
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Table 10: Design for Experiment 3 (canonical, stable game, 2 target cells per input) [from Section 4.1.4.3] 

Name Factor values Treatments 

Target responses {1, 2, 3, 6} 4 

Collection length, c {1, 2, 4, 6, 12} 5 

TBL thresholds, κ* <(κs, κw,κi, κd)> selected from the following set of 

values, subject to the specified constraints: 

<50.00, 70.00, 90.00, 95.00, 99.99> 

66 

Experiment resource requirements 

Total treatments 1340* 

Estimated time per treatment 2 CPU minutes 

Estimated total CPU time required 1.9 CPU days 

Total CPUs available 4 

Estimated total time required 1 day 

*  total number of treatments calculated as follows:  

Standard-CLA treatments = 4(5) 

TBL-CLA treatments = 4(5)(66) 

Total = Standard-CLA treatments + TBL-CLA treatments = 1340 

 

 

5.4.1 Results 

The results are presented in footprints in this section and have been sized to fit a 

single page. In many cases, this limits the legibility of the data labels. The footprints are 

intended to give an overview of trends in behavior and performance as the factors are 

varied. Each performance measure has a unique dynamic range, but they are all presented 

in the same color range (red to green). Because the footprints are used to visualize trends, 

the exact values are not as important. Bright green is always used for results that favor 

the TBL-CLA and bright red for those that favor the Standard-CLA. The footprints are 

also presented at a legible resolution with individual color scale information over several 

pages in the following appendices: APPENDIX D: EXPERIMENT 3, PAYOFF 
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RESULTS, APPENDIX E: EXPERIMENT 3, EXPENSE RESULTS, and APPENDIX F: 

EXPERIMENT 3 N-TILE RESULTS. 

Table 22 shows the results of Experiment 3 sorted by the TBL thresholds. Section 

3.6.4 describes the layout of the footprint in greater detail, but briefly, the columns and 

rows are organized in a hierarchical fashion.  

The columns are divided first by the performance metric: Payoff, then Expense, then 

n-tile advantage.  Within each performance metric, the columns are subdivided by 

collection length. Finally, within each collection length, the columns are again subdivided 

by the TruthTable game state, which corresponds to the number of target outputs in each 

game state. 

The rows are organized hierarchically by TBL thresholds. The thresholds are 

presented in the following order, from left to right: 

• Support threshold, κs 

• Withdrawal threshold, κw 

• Independence threshold, κi 

• Dependence threshold, κd 

The factor values for the TBL thresholds are presented from smallest to largest, 

according to the following rules: 

•••• The withdrawal threshold must be less than or equal to the support threshold.   

 κw ≤ κs 

•••• The independence threshold must be less than or equal to the support threshold. 

  κi ≤ κs 

 



 

 176  

•••• The dependence threshold must be less than or equal to the independence 

threshold. 

  κd ≤ κi 

Turning to the results in Table 22, it can be seen that the TBL-CLA performs 

significantly better than the Standard-CLA across almost all the factors and metrics.  

Increasing the number of target responses per input from one to two is advantageous for 

the Standard-CLA, but the increase that that gives to the Tactic-Based Learning 

advantage, TBLα, allows the TBL-CLA to do consistently better.   

 

 

 

 

 

 

 



 

 

Table 22: Results from Experiment 3, sorted by TBL thresholds. 

TruthTable game state are the column 

sorted from smallest to largest factors values in the following order, according to the rules for TBL thresholds: 

support threshold, withdrawal threshold, independence threshold, and depen
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Results from Experiment 3, sorted by TBL thresholds. The varying collection lengths 

are the column headers. The TBL thresholds are the row headers. The thresholds are 

sorted from smallest to largest factors values in the following order, according to the rules for TBL thresholds: 

support threshold, withdrawal threshold, independence threshold, and dependence threshold.

 

The varying collection lengths and the 

headers. The TBL thresholds are the row headers. The thresholds are 

sorted from smallest to largest factors values in the following order, according to the rules for TBL thresholds: 

dence threshold. 
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In order to draw more specific observations about the performance of a TBL-CLA, it 

is necessary to reorder the footprint and examine smaller subsections of it. In order to 

identify those TBL threshold 4-tuples that are most effective, the results are sorted by the 

minimum Payoff value in each row. The minimum Payoff values fell into four distinct 

groups: values greater than 18.0, values between 10.0 and 18.0, values between 0.0 and 

10.0, and values less than 0.0. These four groups were internally sorted by the maximum 

Expense value for each row. The resorted results are presented in Table 23.  

While almost all of the TBL threshold 4-tuples resulted in a significant advantage for 

the TBL-CLA, the best results were in the same range as those from Experiment 1: those 

with the support threshold set at 70%. The TBL-CLA also does very well when the 

support threshold is set to 90%. The TBL-CLA’s performance degrades as the support 

threshold is set at 99.99%. The worst-case performance comes when the support 

threshold is set to 99.99% and the independence threshold is set at 50%. This produces 

behavior very similar to the Standard-CLA.  

 



 

 

Table 23: Results from Experiment 3

Payoff. They were then separated into four

groups based on the value of the support threshold.
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Results from Experiment 3 sorted by Payoff and Expense. The results were first sorted by minimum 

hey were then separated into four groups and resorted by maximum Expense. The results then fell into 

the value of the support threshold. 

 

results were first sorted by minimum 

. The results then fell into 
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5.4.2 Formal Conclusions for Experiment 3 

A summary of the conclusions drawn from Experiment 3 is presented in this section. 

For a more detailed discussion of these conclusions, see the previous section. All 

conclusions presented in this section are only valid for the TruthTable game in an 

environment with two targets per output and that is stationary, deterministic, and correct 

for the duration of the learning process. Informal conclusions, speculations, and 

predictions about the performance of the application of TBL to other games, including 

actual-life games, will be presented and discussed in Section 5.8. Suggestions for future 

research are presented and discussed in Section 5.9.  

Conclusion 5: The learning behavior of a TBL-CLA is significantly affected by the 

settings of the TBL thresholds.  

Conclusion 5a:  For best performance, set the support threshold at 70%.  

Conclusion 5b:  For strong performance, set the support threshold at 90%. 

Conclusion 5c:  Worst-case performance for a TBL-CLA is not statistically 

significantly different from that of a Standard-CLA. 

Conclusion 5d:  For worst-case performance, set the support threshold to 

99.99% and the independence threshold to 50%.  

Conclusion 6: TBL-CLA performance improves without bound as the TBL 

advantage, TBLα, of the TruthTable game state is increased.  

 

5.5 Experiment 4 

Experiment 4 accomplishes Goal 3.2, described in Section 3.5. The calculation of the 

individual performance measures is completed with the use of a spreadsheet, but the 

process of inspecting the results and drawing conclusions about each case requires 
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significant attention from a person. Table 11 below, from Section 4.1.4.5, presents the 

block design for Experiment 4.  

Table 11: Design for Experiment 4 (close inspection, stationary, 2 target cells per input) [from Section 4.1.4.5] 

Name Factor values Treatments 

TruthTable game states {1, 2, 3, 6} 4 

Collection length, c {1, 2, 4, 6, 12} 5 

TBL threshold 4-tuples 

<(κs, κw,κi, κd)>  

(70.00, 70.00, 70.00, 70.00) 

(99.99, 99.99, 99.99, 99.99) 

(99.99, 50.00, 50.00, 50.00) 

3 

Experiment resource requirements 

Total treatments 80* 

Estimated time per treatment 10 person-minutes 

Estimated time required 14 hours 

*  total number of treatments calculated as follows:  

Standard-CLA treatments = 4(5) 

TBL-CLA treatments = 4(5)(3) 

Total = Standard-CLA treatments + TBL-CLA treatments = 80 

 

5.5.1 Results 

This section presents selected results from Experiment 4. The full set of reduced 

results is available in the digital appendices as interactive Microsoft Excel spreadsheets. 

5.5.2 Best Performance: 4-tuple (κs=70, κw=70, κi=70, κd=50) 

It was observed in Experiment 3 that the 4-tuple of (70, 70, 70, 50) was the best 

performing combination of TBL thresholds. The results of close inspection of the 

behavior of a TBL-CLA with these settings are presented in this section. As the TBL 

thresholds are fixed, the purpose of this experiment is to understand the influence that the 

thresholds have on the behavior of the CLA under varying environmental conditions: the 

collection length and the TruthTable game state. 
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5.5.2.1 TruthTable state 6, Collection Length 12 

It was observed in Experiment 3 that the TBL-CLA generally dominated the 

Standard-CLA across all factor conditions. A closer inspection of the CLAs performance 

on TruthTable game state 6 with a collection length of 12 is discussed in this section 

because it presents the most challenging combination of factors: a long collection and the 

lowest possible TBLα.   

Figure 36 shows that the scores of the TBL-CLA are significantly and consistently 

higher than those of the Standard-CLA. Figure 37 shows that the TBL-CLA makes use of 

tactics all throughout the learning process, implying that it is the use of tactics which 

leads to such strong performance. Figure 38 shows that the TBL-CLA has significantly 

fewer stimulants making random selections during the learning process. 
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Figure 36: With two target responses for each stimulant, the TBL-CLA’s score is significantly and consistently 

better than that of the Standard-CLA’s. 

Figure 37: The TBL-CLA makes use of tactics throughout the learning process. When the support threshold and 

independence thresholds are equal, the TBL-CLA cannot have independent stimulants.  
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5.5.3 Average Performance: 4-tuple (κs= 99.99, κw= 99.99, κi= 99.99, κd= 99.99) 

In an average 4-tuple, the TBL-CLA still does very well. The 4-tuple (99.99, 99.99, 

99.99, 99.99) produced average and is interesting because it is at the extreme of the 

setting values.  

5.5.3.1 TruthTable game state 2, Collection Length 4 

In conditions with a shorter collection length, it is possible to get a better picture of 

how the TBL-CLA learns. When the TBL thresholds are all set to the maximum value, it 

creates a lull in the learning progress of the TBL-CLA, which can be seen in Figure 39. A 

side effect of setting the thresholds so high is that new support stimulants may struggle to 

maintain their selection confidence. If the selection confidence falls below 99.99%, the 

Figure 38: The TBL-CLA makes significantly fewer random selections that the Standard-CLA. 
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new supporters are forced to become seekers. At a selection confidence of 99.99%, these 

stimulants will already be confident stimulants and will consistently choose the same 

respondent; however, if some of these confidence stimulants continue to experience a 

drop in selection confidence, they may no longer be confident stimulants and may make 

some random selections until they regain their selection confidence. Figure 40 and figure 

41 show that the plateau in the learning curve matches the increase in seeker stimulants 

and the increase in stimulants making random selections. 

 

 

Figure 39: The TBL-CLA produces a staircase-style learning curve. 
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Figure 40: The TBL-CLA experiences a slight increase in the number of seeker stimulants halfway through the 

learning process. This accounts for the brief stagnation in score performance.   

Figure 41: The number of stimulants making random selections increases with the number of seeker stimulants, 

but remains significantly fewer then the Standard-CLA 
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5.5.4 Poor Performance: 4-tuple (κs= 99.99, κw= 50, κi= 50, κd= 50) 

The worst-case results in Experiment 3 were those where the TBL-CLA’s 

performance was not significantly different than that of the Standard-CLA’s. This section 

examines one of the 4-tuples that produces such performance.  

5.5.4.1 TruthTable game state 2, Collection Length 12 

When the TBL-CLA cannot use its tactics, it behaves like a Standard-CLA because it 

is using the Standard selection policy throughout the learning process. This behavior is 

very similar to the behavior that was seen in the neutral example in Experiment 2 (see 

Section 5.3.3).  Figure 42 and Figure 44 show that the TBL-CLA’s performance is not 

significantly different from the Standard-CLA’s score and number of random selections. 

Figure 43 shows that the lack of follower stimulants accounts for this behavior. 

Figure 42: Despite a slight advantage in the first few test points, the TBL-CLA scores become indistinguishable 

from the Standard-CLA’s scores. 
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  Figure 44: The TBL thresholds prevent the stimulants from using tactics for any significant period of time which has the 

consequence of forcing the TBL-CLA to follow the Standard selection policy during the learning process. 

Figure 43 The TBL-CLA has as the same number of stimulants making random selections as the Standard-CLA. 
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5.5.5 Formal Conclusions for Experiment 4 

A summary of the conclusions drawn from Experiment 4 is presented here in 

summary form. For a more detailed discussion of these conclusions, see the previous 

section. All conclusions presented in this section are only valid for the TruthTable game 

in an environment with two targets per output and that is stationary, deterministic, and 

correct for the duration of the learning process. In formal conclusions, speculations, and 

predictions about the performance of the application of TBL to other games, including 

actual-life games, will be presented and discussed in Section 5.8. Suggestions for future 

research are presented and discussed in Section 5.9.  

Conclusion 5: The learning behavior of a TBL-CLA is significantly affected by the 

settings of the TBL thresholds. (Conclusion 5 from Experiment 3) 

Conclusion 5e:  When all the TBL thresholds are set to 99.99%, the TBL-CLA’s 

performance plateaus briefly as the selection confidence rises. 

5.6 Experiment 5 

Experiment 5 is a canonical experiment. The TruthTable game environment is not 

stationary throughout the learning process, that is, the arrangement of target cells changes 

after completion of the secondary phase, and there is only one target cell per input. For 

more detail on the experiment design, see Section 4.1.5. The results presented in this 

section are for the tertiary phase of the game only. Below in Table 15, taken from Section 

4.1.5.4 is an experiment block design with all of the factors. Both Standard and TBL-

CLAs are used. The results from the Standard-CLA are used as a baseline for computing 

the performance measures.  
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Table 15: Design for Experiment 5 (canonical, task-switching, 1 target cell per input) [from Section 4.1.5.4] 

Name Factor values Treatments 

Target responses {1, 2, 3, 6} 4 

Collection length, 

c 

{1, 2, 4, 6, 12} 5 

TBL thresholds, κ* <(κs, κw,κi, κd)> selected from the following set of 

values, subject to the specified constraints: 

<50.00, 70.00, 90.00, 98.00, 99.99> 

66 

Experiment resource requirements 

Total treatments 1340* 

Estimated time per treatment 8 CPU minutes 

Estimated total CPU time required 7.5 CPU days 

Total CPUs available 4 

Estimated time required 2 days 

*  total number of treatments calculated as follows:  

Standard-CLA treatments = 4(5) 

TBL-CLA treatments = 4(5)(66) 

Total = Standard-CLA treatments + TBL-CLA treatments = 1340 

 

 

5.6.1 Results 
The results are presented in footprints in this section and have been sized to fit a 

single page. In many cases, this limits the legibility of the data labels. The footprints are 
intended to give an overview of trends in behavior and performance as the factors are 
varied. Each performance measure has a unique dynamic range, but they are all presented 
in the same color range (red to green). Because the footprints are used to visualize trends, 
the exact values are not as important. Bright green is always used for results that favor 
the TBL-CLA and bright red for those that favor the Standard-CLA. The footprints are 
also presented at a legible resolution with individual color scale information over several 
pages in the following appendices: APPENDIX G: EXPERIMENT 5, PAYOFF RESULTS;  
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APPENDIX H: EXPERIMENT 5, EXPENSE RESULTS; and APPENDIX I: EXPERIMENT 5 

N-TILE RESULTS. 

Table 24 shows the results of Experiment 5 sorted by the TBL thresholds. Section 

3.6.4 describes the layout of the footprint in greater detail, but briefly, the columns and 

rows are organized in a hierarchical fashion.  

The columns are divided first by the performance metric: Payoff, then Expense, then 

n-tile advantage.  Within each performance metric, the columns are subdivided by 

collection length. Finally, within each collection length, the columns are again subdivided 

by the TruthTable game state, which corresponds to the number of target outputs in each 

game state. 

The rows are organized hierarchically by TBL thresholds. The thresholds are 

presented in the following order, from left to right: 

• Support threshold, κs 

• Withdrawal threshold, κw 

• Independence threshold, κi 

• Dependence threshold, κd 

The factor values for the TBL thresholds are presented from smallest to largest, 

according to the following rules: 

•••• The withdrawal threshold must be less than or equal to the support threshold.   

 κw ≤ κs 

•••• The independence threshold must be less than or equal to the support threshold. 

  κi ≤ κs 
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•••• The dependence threshold must be less than or equal to the independence 

threshold. 

  κd ≤ κi 

Table 24: Results from Experiment 5, sorted by TBL thresholds. The varying collection lengths and the TruthTable 

game state are the column headers. The TBL thresholds are the row headers. The thresholds are sorted from smallest 

to largest factors values in the following order, according to the rules for TBL thresholds: support threshold, 

withdrawal threshold, independence threshold, and dependence threshold. 
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Turning to the results in Table 24, it can be seen that the TBL-CLA does not have as 

strong as an advantage in a task-switching game as it is in the other two stationary games 

that are examined in Experiments 1 and 3. While it can also be seen that the TBL 

thresholds do have an effect on the behavior, it necessary to reorder the footprint in order 

to gain further insight into the relationship between the threshold settings and behavior. 

Table 25 shows the results of Experiment 5 sorted by the minimum Payoff in each 

row. While this technique is useful for revealing patterns in the results in Experiment 1 

and Experiment 3, it did not group the patterns of behavior very well. The data was then 

resorted by the maximum Expense  and  average Payoff in each row, and this did a better 

job of grouping the results in a useful way. Table 26 shows the sorted and grouped data. 

Table 25: The results of Experiment 5 sorted by the minimum Payoff in each row 
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Table 26 reveals some clearer groupings, which have been highlighted. These groups 

are examined more closely in Table 27 through Table 29. Recall that in the tertiary phase 

of learning, the results reflect the ability of the TBL-CLA to recover it performance after 

the game has suddenly changed from one state to another. In the footprints, the column 

for game state 1 records the results for the transition from game state 1 to game state 2, 

the column for game state 2 contains the results for the transition from state 2 to state 3, 

the column for state 3 contains the results for the transition from state 3 to state 6, and the 

column for game state 6 contains the results for the transition from state 6 back to state 1.  

Table 26: Results of Experiment 5 sorted first by the maximum Expense in each row. The results were then group and 

internally sorted by the average Payoff in each row. This revealed the major groupings.  
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The best results from Experiment 5 are those TBL 4-tuples with the withdrawal 

threshold is set at 90% and the support and independence thresholds are set equal to each 

other at 90% or 98%. In Experiments 1 and 3, the environment was stationary and so the 

ideal learning curve is one that only has a positive slope. In Experiment 5, the 

environment is not stationary and; therefore, even the ideal learning curve must have 

some period of a negative slope as the learner unlearns old responses and relearns the 

new correct ones. In Experiments 1 and 3, the best thresholds were set near 70% 

anticipating that the learner’s selection confidence starts low and should only become 

higher. In this experiment, in the tertiary phase the learner’s selection confidence should 

start high and fall as a reaction to the influx of negative feedback that the learner will 

have to encounter as it learns that some of its old responses do not work anymore. By 

setting the TBL-thresholds higher in a task-switching environment, the TBL-CLA is able 

to withdraw support from those tactics that should no longer be used and have some of its 

stimulants become followers of tactics again to make the “course correction”.  

If these thresholds are set too high, the TBL-CLA becomes overly sensitive and if 

they are set too low, the TBL-CLA does not get to take advantage of using follower 

stimulants because the stimulants will have relearned their correct respondents by simply 

using the Standard selection policy. The worst results come from TBL 4-tuples settings 

with the withdrawal threshold set to 50%. In these cases, there is no possibility of the 

stimulants ever returning to follower status. Individual cases are discussed in greater 

detail in Experiment 6. 

 

 
 

 



 

 

Table 27: Best results from Experiment 5, sorted by the maximum Expense value in each row. 
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Best results from Experiment 5, sorted by the maximum Expense value in each row. 

 

Best results from Experiment 5, sorted by the maximum Expense value in each row.  



 

 

Table 28: Average results from Experiment 5 sorted by the maximum Expense in each row.

 197 

Average results from Experiment 5 sorted by the maximum Expense in each row.

 

Average results from Experiment 5 sorted by the maximum Expense in each row. 



 

 

Table 29: The worst results from Experiment 5 sorted by the maximum Expense in each row.
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The worst results from Experiment 5 sorted by the maximum Expense in each row.

 

The worst results from Experiment 5 sorted by the maximum Expense in each row. 
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5.6.2 Formal Conclusions for Experiment 5 

A summary of the conclusions drawn from Experiment 5 is presented here in 

summary form. For a more detailed discussion of these conclusions, see the previous 

section. All conclusions presented in this section are only valid for the TruthTable game 

in an environment with one target per output and that is task-switching, deterministic, 

and correct for the duration of the learning process. The experimental results and 

conclusions are only relevant to the tertiary phase of the game, and are focus on the 

recovery of learning performance. Informal conclusions, speculations, and predictions 

about the performance of the application of TBL to other games, including actual-life 

games, will be presented and discussed in Section 5.8. Suggestions for future research are 

presented and discussed in Section 5.9.  

Conclusion 6: The learning behavior of a TBL-CLA is significantly affected by the 

settings of the TBL thresholds.  

Conclusion 6a:  For best performance, set the withdrawal threshold at 90% 

and the support and independence equal to each other at values 

between 90 and 98%.  

Conclusion 6b:  For worst-case performance, set the support 

threshold to 99.99% and the withdrawal threshold to 50%.  

Conclusion 7: When the TBL thresholds are at their optimal settings, the TBL-CLA 

significantly outperforms the Standard-CLA at no statistically 

significant Expense across all collection lengths and TruthTable game 

states. This implies that TBL is a useful strategy for learning and 

recovering learning performance in a changing environment. 
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5.7 Experiment 6 

Experiment 6 accomplishes Goal 3.3, described in Section 3.5. The calculation of the 

individual performance measures is completed with the use of a spreadsheet, but the 

process of inspecting the results and drawing conclusions about each case requires 

significant attention from a person. Table 16, taken from Section 4.1.5.6, below presents 

the block design for Experiment 6.  

Table 16: Design for Experiment 6 [from 4.1.5.6] 

Name Factor values Treatments 

TruthTable game states {1, 2, 3, 6} 4 

Collection length, c {1, 2, 4, 6, 12} 5 

TBL threshold 4-tuples 

<(κs, κw,κi, κd)>   

(90.00, 90.00, 90.00, 70.00) 

(99.99, 99.99, 70.00, 70.00) 

(99.99, 50.00, 50.00. 50.00) 

3 

Experiment Resource Requirements 

Total treatments 80* 

Estimated time per treatment 10 person-minutes 

Total time required 14 person hours 

*  total number of treatments calculated as follows:  

Standard-CLA treatments = 4(5) 

TBL-CLA treatments = 4(5)(3) 

Total = Standard-CLA treatments + TBL-CLA treatments = 80 

 

 

5.7.1 Results 

This section presents selected results from Experiment 6. The full set of reduced 

results is available in the digital appendices as interactive Microsoft Excel spreadsheets. 
 

5.7.2 Best Performance: 4-tuple (κs=90, κw=90, κi=90, κd=70) 

It was observed in Experiment 5 that the 4-tuple of (90, 90, 90, 70) was the best 
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performing combination of TBL thresholds. The results of close inspection of the 

behavior of a TBL-CLA with these settings are presented in this section. As the TBL 

thresholds are fixed, the purpose of this experiment is to understand the influence that the 

thresholds have on the behavior of the CLA under varying environmental conditions: the 

collection length and the TruthTable game state. 

5.7.2.1 TruthTable game state 1 to 2, Collection Length 12 

At a collection length of 12, both CLAs face the most difficult challenge because the 

signal-to-noise ratio is at its lowest. The problem is compounded by the way in which the 

game changes. When the TruthTable game state changes from state 1 to state 2, 50% of 

all of the inputs are reassigned to new target outputs. The TBL-CLA needs to discover 

this new target response and identify it as a tactic. This takes time, during which some of 

the stimulants cross the support threshold. When the new tactic is identified, there is a 

smaller number of tactics that can become followers of it. Figure 45 shows that the TBL-

CLA does not score significantly better than the Standard-CLA, but it does reach the 

termination condition before the Standard-CLA. Figure 46 shows that the follower 

stimulants appear later in the learning process and Figure 47 shows that the TBL-CLA 

does not make significantly fewer random selections than the Standard-CLA. 
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Figure 46: Because the CLA starts the tertiary phase with a high selection confidence, it takes time before the 

first followers appear in the system. 

Figure 45: At a collection length of 12 and a 50% change in the game, the TBL-CLA garners a small Payoff, 

but earns a very low Expense 
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Figure 47: Even though the TBL-CLA has fewer stimulants selecting respondents at random early in the phase, 

the TBL-CLA’s score is not significantly different from the Standard-CLA’s score. This implies that the TBL-CLA is 

entrenched in its behavior and needs more time to unlearn old patterns. 
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5.7.2.2 TruthTable game state 2 to 3, Collection Length 12 

When the TruthTable game state changes from state 2 to state 3, it is also the case 

that 50% of the inputs are reassigned to new target; however, Figure 48 shows that in this 

case, the TBL-CLA is able to score significantly better than the Standard-CLA. The 

advantage comes from the fact that when the game state changes from state 2 to state 3 

one third of the inputs which are reassigned are reassigned to target responses that were 

already in use in state 2 (see Section 4.1.5.1 for more details). Because some of the 

reassigned inputs to target responses that the TBL-CLA has identified as tactics, these 

inputs can be followers earlier and take advantage of this guidance sooner than the other 

stimulants that must wait for the new tactic to be identified. Figure 49 demonstrates the 

fact that follower stimulants appear earlier, and Figure 50 shows that the TBL-CLA makes 

significantly fewer random selections. 

 

Figure 48: When the game changes from state 2 to state 3, it is also a 50% change. The difference in 

performance comes from the fact that 1/3 of the changed inputs are reassigned to a target response that was in 

use in the previous stage. 
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Figure 49: The TBL-CLA has few stimulants making random selections, which corresponds with the use of tactics.  

Figure 50: Some of the stimulants that are reassigned can become followers of an existing tactic early in the 

phase, instead of having to wait until a new tactic is discovered. 



 

 206  

5.7.2.3 TruthTable game state 6 to 1, Collection Length 12 

Similarly to the transition from TruthTable game state 2 to state 3, the transition from 

state 6 to state 1 involves reassigning 83% of the inputs to new targets (see Section 

4.1.5.1 for details). Moving from 6 target responses to one target response means that the 

TBL-CLA does not have to identify any new tactics and can begin immediately using an 

existing tactic. Figure 51 shows that the TBL-CLA scores significantly better than the 

Standard-CLA. Figure 52 shows that the TBL-CLA is able to have a large number of 

follower stimulants fairly early in the learning process. Figure 53 shows that the TBL-

CLA has significantly few stimulants that are selecting responses at random. 
 

 

 

Figure 51: When the game state changes from 6 to 1, 83% of the inputs are reassigned to new target 

respondents; however, the new reassigned inputs are assigned to the same target response, which was already 

in use in the previous phase. This gives the TBL-CLA a significant advantage.  
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Figure 53: The TBL threshold settings prevent the TBL-CLA from using independent stimulants. The TBL-CLA has 

many follower stimulants which help to boost the scores. 

Figure 52: Despite the larger variance, the TBL-CLA has significantly fewer stimulants selecting random 

respondents than the Standard-CLA. 
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5.7.3 Average Performance: 4-tuple (κs=99.99, κw=99.99, κi=70, κd=70) 

It was observed in Experiment 5 that the 4-tuple of (99.99, 99.99, 70, 70) was an 

average performing combination of TBL thresholds. The results of close inspection of the 

behavior of a TBL-CLA with these settings are presented in this section. As the TBL 

thresholds are fixed, the purpose of this experiment is to understand the influence that the 

thresholds have on the behavior of the CLA under varying environmental conditions: the 

collection length and the TruthTable game state. 

5.7.3.1 TruthTable game state 3 to 6, Collection Length 6 

In the average case, the TBL-CLA’s recovery performance is better with a shorter 

collection length. Figure 54 shows that the TBL-CLA scores significantly better than the 

Standard-CLA and that it reaches the termination conditions before the Standard-CLA. 

Figure 55 shows that the TBL-CLA is able to make use of tactics early in the learning 

process. Figure 56 shows that the TBL-CLA has fewer stimulants that select respondents 

at random, which corresponds to the increase in follower stimulants. 
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Figure 54: When the environment provides a shortened collection length, the TBL-CLA can regain its advantage, 

even though the state presents more reassigned inputs.   

Figure 55: The TBL-CLA is able to leverage the follower stimulants to improve its score. 
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5.7.4 Poor Performance: 4-tuple (κs=99.99, κw=50, κi=50, κd=50) 

It was observed in Experiment 5 that the 4-tuple of (99.99, 50, 50, 50) was the worst 

performing combination of TBL thresholds. The results of close inspection of the 

behavior of a TBL-CLA with these settings are presented in this section. As the TBL 

thresholds are fixed, the purpose of this experiment is to understand the influence that the 

thresholds have on the behavior of the CLA under varying environmental conditions: the 

collection length and the TruthTable game state. 

5.7.4.1 TruthTable game state 6 to 1, Collection Length 1 

The worst-case settings of the TBL thresholds are such that the TBL-CLA behaves 

like a Standard-CLA even at a collection length of one (see Figure 57). This is a very 

unusual occurrence; generally, at a collection length of one the TBL-CLA shows some 

advantage. In this case, the TBL thresholds are set such that once a stimulant has become 

Figure 56: The TBL-CLA makes significantly few random selections than the Standard-CLA during the later part of 

the learning process. 
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a supporter, the only way it can become independent is if it acquires more than one 

primary respondent. This only happens in a few instances and none of the stimulants ever 

become followers (see Figure 48). As a consequence, the TBL-CLA makes has as many 

stimulants selecting respondents randomly as the Standard-CLA (see Figure 49). 
 

 

 

 

 

 

 

 

Figure 57: In the worst-case settings of the TBL thresholds, the TBL-CLA’s score is not significantly different 

from the Standard-CLA’s score. This is unusual because the TBL-CLA almost always does better than the 

Standard-CLA with a collection length of one. 
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Figure 58: There is no significant difference between the number of random selections being made by the TBL-

CLA and the Standard-CLA. 

Figure 59 When the withdrawal threshold is set at 50%, the only stimulants that are able to become 

independent are those stimulants that withdraw their support from a tactic because they have more than 

one primary respondent. 
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5.7.4.2 TruthTable game state 6 to 1, Collection Length 2 

Figure 60 shows that at a collection length of two, the TBL-CLA starts to perform 

significantly worse than the Standard-CLA. As the collection length gets longer, the 

updates become more diffuse and the signal-to-noise ratio goes down, causing the TBL-

CLA to take longer to correct itself. Figure 61 shows that very few stimulants are able to 

even change roles, and Figure 62 shows that the TBL-CLA makes significantly more 

random selections later in the learning process. 

 

 

 

Figure 60: Even a collection length of two, the TBL-CLA significantly underperforms the Standard-CLA. 
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Figure 61: The TBL-CLA makes significantly more random selections than the Standard-CLA. 

Figure 62: With the withdrawal, independence, and dependence thresholds all set at 50%, almost all of the 

stimulants remain in the role of supporter.  
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5.7.5 Formal Conclusion from Experiment 6 

A summary of the conclusions drawn from Experiment 6 is presented here in 

summary form. For a more detailed discussion of these conclusions, see the previous 

section. All conclusions presented in this section are only valid for the TruthTable game 

in an environment with one target per output and that is task-switching, deterministic, 

and correct for the duration of the learning process. The experimental results and 

conclusions are only relevant to the tertiary phase of the game, and are focus on the 

recovery of learning performance. Informal conclusions, speculations, and predictions 

about the performance of the application of TBL to other games, including actual-life 

games, will be presented and discussed in Section 5.8. Suggestions for future research are 

presented and discussed in Section 5.9.  

Conclusion 8:  The effectiveness of Tactic-Based Learning to aide in recovery of 

learning behavior after a change in the environment is influenced 

more by the number of reassigned stimulants that can become 

followers of existing tactics than it is influenced by the percentage 

of stimulants that change or the number of new tactics that must 

also be identified. 

 

Conclusion 9:  When the TBL-CLA is able to reduce the number of stimulants that 

select their respondents at random, its performance improves.  
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5.8 Summary of Formal Conclusions 

This section brings together all the formal conclusions that have been drawn from this 

research. The section number of the corresponding experiment from which the conclusion 

is drawn is indicated after each conclusion. All formal conclusions are only valid for the 

TruthTable game. 

Conclusion 1: The learning behavior of a TBL-CLA in a stationary, 

deterministic, and correct environment with one target cell per input is 

significantly affected by the settings of the TBL thresholds. (Section 5.2) 

Conclusion 1a:  For best performance in a stationary, deterministic, and 

correct environment with one target cell per input, set the support, 

withdrawal, and independence thresholds equal to each other and at 

values between 70% and 80%. (Section 5.2) 

Conclusion 1b:  A TBL-CLA will behave like a Standard-CLA when the 

support and withdrawal thresholds are set high, greater than 90%, and 

the independence and dependence thresholds are set at or near the 

minimum (less than or equal to 55%) in a stationary, deterministic, 

and correct environment with one target cell per input. (Section 5.2) 

Conclusion 1c:  Even TBL 4-tuples that do not produce optimal or 

Standard-like behavior in a stationary, deterministic, and correct 

environment with one target cell per input provide significant 

advantages early in the learning process; however, the advantages are 

lost later on as the TBL-CLA significantly underperforms compared to 

the Standard-CLA. (Section 5.2) 
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Conclusion 1d:  In a stationary, deterministic, and correct environment 

with one target cell per input a TBL-CLA performance improves 

when the independent role is removed by setting the support and 

independence thresholds equal to each other. (Section 5.3) 

Conclusion 2:  TBL-CLA performance improves as the TBL advantage, TBLα, of 

the TruthTable game state is increased in a stationary, deterministic, and 

correct environment with one target cell per input. (Section 5.2) 

Conclusion 3: When the TBL thresholds are set for good performance in a 

stationary, deterministic, and correct environment with one target cell per 

input, the TBL-CLA has significantly fewer stimulants that make random 

selections than the Standard-CLA, meeting one of the performance criteria 

for this research. (Section 5.3) 

Conclusion 4: Only a small percentage of the total stimulants need be follower 

stimulants for a TBL-CLA to perform significantly better than a Standard-

CLA in a stationary, deterministic, and correct environment with one target 

cell per input. (Section 5.3) 

Conclusion 5: The learning behavior of a TBL-CLA in a stationary, 

deterministic, and correct environment with two target cells per input is 

significantly affected by the settings of the TBL thresholds. (Section 5.4) 

Conclusion 5a:  For best performance of a TBL-CLA in a stationary, 

deterministic, and correct environment with two target cells per input, 

set the support threshold at 70%. (Section 5.4) 
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Conclusion 5b:  For strong performance of a TBL-CLA in a stationary, 

deterministic, and correct environment with two target cells per input, 

set the support threshold at 90%. (Section 5.4) 

Conclusion 5c:  Worst-case performance for a TBL-CLA in a stationary, 

deterministic, and correct environment with two target cells per input 

is not statistically significantly different than that of a Standard-CLA. 

(Section 5.4) 

Conclusion 5d:  For worst-case performance for a TBL-CLA in a 

stationary, deterministic, and correct environment with two target 

cells per input, set the support threshold to 99.99% and the 

independence threshold to 50%. (Section 5.4) 

Conclusion 5e:  When all the TBL thresholds are set to 99.99% in a 

stationary, deterministic, and correct environment with two target 

cells per input, the TBL-CLA’s performance plateaus briefly as the 

selection confidence rises. (Section 5.5) 

Conclusion 6: TBL-CLA performance improves without bound as the TBL 

advantage, TBLα, of the TruthTable game state is increased in a stationary, 

deterministic, and correct environment with two target cells per input. 

(Section 5.4) 

Conclusion 7: The learning behavior of a TBL-CLA is significantly affected by 

the settings of the TBL thresholds in a task-switching, deterministic, and 

correct environment with one target cell per input. (Section 5.6) 
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Conclusion 7a:  For best performance of a TBL-CLA in a task-switching, 

deterministic, and correct environment with one target cell per input, 

set the withdrawal threshold at 90% and the support and independence 

equal to each other at values between 90 and 98%. (Section 5.6) 

Conclusion 7b:  For worst-case performance of a TBL-CLA in a task-

switching, deterministic, and correct environment with one target cell 

per input, set the support threshold to 99.99% and the withdrawal 

threshold to 50%. (Section 5.6) 

Conclusion 8: When the TBL thresholds are at their optimal settings, the TBL-

CLA significantly outperforms the Standard-CLA at no statistically 

significant Expense across all collection lengths and TruthTable game states 

in a task-switching, deterministic, and correct environment with one target 

cell per input. This implies that TBL is a useful strategy for learning and 

recovering learning performance in a changing environment. (Section 5.6) 

Conclusion 9: The effectiveness of Tactic-Based Learning to aide in recovery of 

learning behavior after a change in the environment is more strongly 

influenced by the number of stimulants that can become followers of existing 

tactics than the percentage of the game that changes or the number of new 

tactics that must be identified. (Section 5.7) 

Conclusion 10: When the TBL-CLA is able to reduce the number of stimulants 

that select their respondents at random, its performance improves. (Sections 

5.3, 5.5, and 5.7) 
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5.8 Informal Observations 

This section contains the informal observations and speculations that have arisen over 

the course of this research. These observations have not been formally tested or validated, 

but they are informed by several years of observation while conducting this research.  

 

1. For almost all settings of the TBL thresholds under all of the environmental 

conditions tested in this research, the TBL-CLA exhibits some significant 

advantage during the learning process. This implies that there might be some way 

to turn off or change learning techniques before the disadvantages started to take 

over.  TBL appears to provide a strong boost in early learning, but it is clearly not 

the only important component of learning in generalization. 

While this research has identified the optimal settings for the TBL thresholds 

across very broad environmental conditions, it is possible that these optimal 

settings may not be appropriate for other environmental situations. The fact that 

the TBL-CLA shows some advantage in the early stages of learning suggests that 

is it a useful technique to apply to other, more complicated problems combined 

with a mechanism for moderating how and when Tactic-Based Learning is 

applied. 

  

2. The independence threshold was included to cover situations in which a CLA 

would be stuck in a local maximum. In this research, the compensation policy was 

an integral part of working against this possibility. The TruthTable game does not 

include target responses that are differently weighted. That is to say, all target 
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responses are equally correct, so once a stimulant has found one target cell, there 

is no reason to look for another, even if one exists. It still seems like a good idea 

to include the independent role, but its value has not been proved by these 

experiments.  

Breaking from the patterns of behavior given to children by their parents is a vital 

part of human development. It is important to spend some time questioning the 

values with which one was raised because it helps form an individual’s identity. 

This rebellion might even be considered a check against bad and abusive 

parenting, although it is clear that the scars of abuse go very deep and are often 

difficult to overcome. While this research has not made a strong case for the 

utility of the independent phase of learning, it should remain an important part of 

any complex artificially intelligent system.  

 

3. While Tactic-Based Learning has only been applied to Collective Learning 

Systems, it seems that the underlying theory should be applicable to other 

reinforcement learning paradigms. With some adjustments, these ideas should 

translate into other areas of machine learning. It seems that the ability to bias the 

learning agent in the direction of effective solutions would be useful to other 

machine learning disciplines. 

 

5.9 Future Directions 

This section discusses suggestions for future research.  

1. Set the TBL and compensation thresholds dynamically, using a CLA 

In this research, the TBL thresholds were fixed throughout the learning process, but 
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in order to build a more flexible system is seems that these thresholds should be 

adjustable and able to react to changes in the environment and growing experience. The 

best way to do this would be to have another CLA learn where to set the thresholds and 

when to change them.   

 

2. Experiment with a more complex environment 

The TruthTable game is a very simplified game that has been limited in scope. The 

benefits of using TBL should translate well to environments that are complex enough to 

require far more than 300 stimulants and 6 respondents.  

 

3. Experiment with an environment that changes independently of the CLA 

preparedness 

In the research, CLAs were allowed to train on each phase of the game until they 

were completely confident and accurate, but many learning environments change without 

consideration of the learner’s readiness. Even if a TBL-CLA has not had a chance to 

become completely confident and accurate, it should still do better than a Standard-CLA. 

 

4. Experiment with an environment that changes incrementally 

In this research, when the environment changed from one state to the next, the change 

happened all at once; however, there are many real-world applications were the 

environment is changing slowing and continually. Over time, a TBL-CLA should be able 

to perform better in this kind of changing environment than a Standard-CLA. 
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5. Implementing a TBL-CLA in a real-world application, such a video game 

Video games can provide rich environments for learning from human interaction. It is 

possible that a TBL-CLA could learn individual players’ behavior quickly enough to 

provide a more interesting and challenging opponent or non-player character ally. This 

would move the computer-generated components of the game away from predictable 

behavior and towards a more dynamic play experience.  

  

6. Experiment with environments with non-uniformly weighted target 

responses 

It was mentioned in the informal observations (Section 5.8) that this research has not 

found a strong justification for the inclusion of the independent role, although it appears 

to have a strong biological precedent. The environment used in this research had 

uniformly valued target responses, which explains why there is no benefit to exploring 

the response range once a target cell has been found. The usefulness of the independent 

role might become more apparent in an environment with multiple, but unequally valued 

target responses.  

  

7. Experiment with combining TBL and feature analysis 

One of the major contributions of this research is that it identifies a new method for 

improving learning without using any feature analysis or generalization; however, it has 

also been speculated that TBL can not be the only piece that is needed for complex 

learning. TBL could be combined with some kind of feature comparison to, perhaps, 

decide if a tactic was worth following or not before choosing it from the global tactic list.  
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8. Investigating learning pathologies that are introduced with TBL  

While TBL can be very effective at improving the learning behavior of a CLA, it can 

also be made to hinder the learning process. If TBL is actually replicating or imitating the 

human learning process on some level, it is possible that there might be parallels in the 

problems it can introduce into the learning process. One area to look for parallel is the 

area of learning disabilities.  It would be interesting to look for parallel between these 

behaviors and those of people with learning disabilities. If TBL is modeling some sort of 

behavior that is happening in the brain, then it might be true that it produces parallel 

patterns of failure. Additionally, it might be possible to model some of the therapies with 

a sub-optimal TBL-CLA to see if it is possible to correct the deficiencies introduced by 

incorrect settings of the TBL thresholds.  
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APPENDIX A: EXPERIMENT 1, PAYOFF RESULTS  
 

 

 

 

 

 

This appendix presents the entire Payoff footprint, sorted by the TBL thresholds.  
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APPENDIX B: EXPERIMENT 1, EXPENSE RESULTS 
 

 

 

 

 

 

 

This appendix presents the full Expense results from Experiment 1, sorted by TBL threshold. 

 

 



 

 237   



 

 238  



 

 239    



 

 240  

 



 

 241   



 

 242  

APPENDIX C: EXPERIMENT 1 N-TILE ADVANTAGE RESULTS 
 
 
 
 
 
 
 
 
 
 
 
 
 
This section presents the full n-tile advantage results for Experiment 3. The results are 

sorted by TBL thresholds and are presented across the n-tiles and then down the TBL 

threshold factors.  
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APPENDIX D: EXPERIMENT 3, PAYOFF RESULTS 
 

 

 

 

 

 

This appendix contains the entire Payoff foot print for Experiment 3, sorted by TBL 
thresholds. 
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APPENDIX E: EXPERIMENT 3, EXPENSE RESULTS 
 

 

 

 

 

 

 

 

 

This appendix contains the entire Expense footprint for Experiment 3, sorted by TBL 
thresholds.  
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APPENDIX F: EXPERIMENT 3 N-TILE RESULTS 
 

 

 

 

 

 

This section presents the full n-tile advantage results for Experiment 3. The results are 

sorted by TBL thresholds and are presented across the n-tiles and then down the TBL 

threshold factors. 
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APPENDIX G: EXPERIMENT 5, PAYOFF RESULTS 
 

 

 

 

 

 

 

 

This appendix contains the entire Payoff footprint for Experiment 5, sorted by TBL 
thresholds.  
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APPENDIX H: EXPERIMENT 5, EXPENSE RESULTS 
 

 

 

 

 

 

 

This section presents the entire Expense footprint for Experiment 5, sorted by TBL thresholds. 
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APPENDIX I: EXPERIMENT 5 N-TILE RESULTS 
 

 

 

 

 

 

 

This section presents the full n-tile advantage results for Experiment 5. The results are 
sorted by TBL thresholds and are presented across the n-tiles and then down the TBL 
threshold factors.  
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DIGITAL APPENDICES 
 

 

 

 

 

This section provides the list of the digital appendices. All Reduced Results are in Microsoft 

Excel spreadsheets which contain VBA macros.  

d.A. Java Source Code (.java) 

d.B. Experiment 1 Reduced Results  

d.C. Experiment 2 Reduced Results for case (70, 70, 70, 70)   

d.D. Experiment 2 Reduced Results for case (99.99, 95, 50, 50) 

d.E. Experiment 2 Reduced Results for case (95, 95, 95, 50) 

d.F. Experiment 3 Reduced Results  

d.G. Experiment 4 Reduced Results for case (70, 70, 70, 50) 

d.H. Experiment 4 Reduced Results for case (99.99, 99.99, 99.99, 99.99) 

d.I.   Experiment 4 Reduced Results for case (99.99, 50, 50, 50) 

d.J.   Experiment 5 Reduced Results   

d.K. Experiment 6 Reduced Results for (90, 90, 90, 70) 

d.L. Experiment 6 Reduced Results for (99.99, 99.99, 70, 70) 

d.M.  Experiment 6 Reduced Results for (99.99, 50, 50, 50) 


