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“Prediction is very difficult, especially about the future” – Niels Bohr 

 

INTRODUCTION 

Biological systems can be viewed as information management systems, with a basic 

instruction set stored in each cell’s DNA as “genes.” For most genes, their information is 

enabled when they are transcribed into RNA which is subsequently translated into the 

proteins that form much of a cell’s machinery. Although details of the process for 

individual genes are known, more complex interactions between elements are yet to be 

discovered. What we do know is that diseases can result if there are changes in the genes 

themselves, in the proteins they encode, or if RNAs or proteins are made at the wrong 

time or in the wrong quantities. 

 

Recent advances in biotechnology led to the development of DNA microarrays, which 

quantitatively measure the expression of thousands of genes simultaneously and provide 

a snapshot of a cell’s response to a particular condition. Finding patterns of gene 

expression that provide insight into biological endpoints offers great opportunities for 

revolutionizing diagnostic and prognostic medicine and providing mechanistic insight in 
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data-driven research in the life sciences, an area with a great need for advances, given the 

urgency associated with diseases. However, microarray data analysis presents a number 

of challenges, from noisy data to the curse of dimensionality (large number of features, 

small number of instances) to problems with no clear solutions (e.g. real world mappings 

of genes to traits or diseases that are not yet known).  

 

Finding patterns of gene expression in microarray data poses problems of class discovery, 

comparison, prediction, and network analysis which are often approached with AI 

methods. Many of these methods have been successfully applied to microarray data 

analysis in a variety of applications ranging from clustering of yeast gene expression 

patterns (Eisen et al., 1998) to classification of different types of leukemia (Golub et al., 

1999). Unsupervised learning methods (e.g. hierarchical clustering) explore clusters in 

data and have been used for class discovery of distinct forms of diffuse large B-cell 

lymphoma (Alizadeh et al., 2000). Supervised learning methods (e.g. artificial neural 

networks) utilize a previously determined mapping between biological samples and 

classes (i.e. labels) to generate models for class prediction. A k-nearest neighbor (k-NN) 

approach was used to train a gene expression classifier of different forms of brain tumors 

and its predictions were able to distinguish biopsy samples with different prognosis 

suggesting that microarray profiles can predict clinical outcome and direct treatment 

(Nutt et al., 2003). Bayesian networks constructed from microarray data hold promise for 

elucidating the underlying biological mechanisms of disease (Friedman et al., 2000). 

 

BACKGROUND 

Cells dynamically respond to their environment by changing the set and concentrations of 

active genes by altering the associated RNA expression. This “gene expression” is one of 

the main determinants of a cell’s state, or phenotype. For example, we can investigate the 

differences between a normal cell and a cancer cell by examining their relative gene 

expression profiles.  

 

Microarrays quantify gene expression levels in various conditions (such as disease vs. 
normal) or across time points. For n genes and m instances (biological samples), 

microarray measurements are stored in an n by m matrix where each row is a gene, each 
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column is a sample and each element in the matrix is the expression level of a gene in a 

biological sample, where samples are instances and genes are features describing those 

instances. Microarray data is available through many public online repositories (Table 1). 

In addition, the Kent-Ridge repository (http://sdmc.i2r.a-star.edu.sg/rp/) contains pre-

formatted data ready to use with the well-known machine learning tool Weka (Witten & 

Frank, 2000). 

 

Microarray data presents some unique challenges for AI such as a severe case of the 

curse of dimensionality due to the scarcity of biological samples (instances). Microarray 

studies typically measure tens of thousands of genes in only tens of samples. This low 

case to variable ratio increases the risk of detecting spurious relationships. This problem 

is exacerbated because microarray data contains multiple sources of within-class 

variability, both technical and biological. The high levels of variance and low sample size 

make feature selection difficult. Testing thousands of genes creates a multiple testing 

problem, which can result in underestimating the number of false positives. Given data 

with these limitations, constructing models becomes under-determined and therefore 

prone to over-fitting.  

 

From biology, it is also clear that genes do not act independently. Genes interact in the 

form of pathways or gene regulatory networks. For this reason, we need models that can 

be interpreted in the context of pathways. Researchers have successfully applied AI 

methods to microarray data preprocessing, clustering, feature selection, classification, 

and network analysis. 

 
 

Mining Microarray Data: Current Techniques, Challenges and Opportunities for AI 

 

Data Preprocessing 
After obtaining microarray data, normalization is performed to account for systematic 

measurement biases and to facilitate between-sample comparisons (Quackenbush, 2002). 

Microarray data may contain missing values that may be replaced by mean replacement 

or k-NN imputation (Troyanskaya et al., 2001).  
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Feature Selection 

The goal of feature selection is to find genes (features) that best distinguish groups of 

instances (e.g. disease vs. normal) to reduce the dimensionality of the dataset. Several 

statistical methods including t-test, significance analysis of microarrays (SAM) (Tusher 

et al., 2001), and analysis of variance (ANOVA) have been applied to select features 

from microarray data.  

 

In classification experiments, feature selection methods generally aim to identify relevant 

gene subsets to construct a classifier with good performance (Inza et al., 2004). Features 

are considered to be relevant when they can affect the class; the strongly relevant are 

indispensable to prediction and the weakly relevant may only sometimes contribute to 

prediction. 

 

Filter methods evaluate feature subsets regardless of the specific learning algorithm used. 

The statistical methods for feature selection discussed above as well as rankers like 

information gain rankers are filters for the features to be included. These methods ignore 

the fact that there may be redundant features (features that are highly correlated with each 

other and as such one can be used to replace the other) and so do not seek to find a set of 

features which could perform similarly with fewer variables while retaining the same 

predictive power (Guyon & Elisseeff, 2003). For this reason multivariate methods are 

more appropriate.  

 

As an alternative, wrappers consider the learning algorithm as a black-box and use 

prediction accuracy to evaluate feature subsets (Kohavi & John, 1997). Wrappers are 

more direct than filter methods but depend on the particular learning algorithm used. The 

computational complexity associated with wrappers is prohibitive due to curse of 

dimensionality, so typically filters are used with forward selection (starting with an 

empty set and adding features one by one) instead of backward elimination (starting with 

all features and removing them one by one). Dimension reduction approaches are also 

used for multivariate feature selection. 
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Dimension Reduction Approaches 
Principal component analysis (PCA) is widely used for dimension reduction in machine 

learning (Wall et al., 2003). The idea behind PCA is quite intuitive: correlated objects 

can be combined to reduce data “dimensionality”. Relationships between gene expression 

profiles in a data matrix can be expressed as a linear combination such that colinear 

variables are regressed onto a new set of coordinates. PCA, its underlying method Single 

Value Decomposition (SVD), related approaches such as correspondence analysis 

(COA), and multidimensional scaling (MDS) have been applied to microarray data and 

are reviewed by Brazma & Culhane (2005). Studies have reported that COA or other dual 

scaling dimension reduction approaches such as spectral map analysis may be more 

appropriate than PCA for decomposition of microarray data (Wouters et al., 2003).  

 

While PCA considers the variance of the whole dataset, clustering approaches examine 

the pairwise distance between instances or features. Therefore, these methods are 

complementary and are often both used in exploratory data analysis. However, 

difficulties in interpreting the results in terms of discrete genes limit the application of 

these methods. 

 

Clustering 
What we see as one disease is often a collection of disease subtypes. Class discovery 

aims to discover these subtypes by finding groups of instances with similar expression 

patterns. Hierarchical clustering is an agglomerative method which starts with a singleton 

and groups similar data points using some distance measure such that two data points that 

are most similar are grouped together in a cluster by making them children of a parent 

node in the tree. This process is repeated in a bottom-up fashion until all data points 

belong to a single cluster (corresponding to the root of the tree).  

 

Hierarchical and other clustering approaches, including K-means, have been applied to 

microarray data (Causton et al., 2003). Hierarchical clustering was applied to study gene 

expression in samples from patients with diffuse large B-cell lymphoma (DLBCL) 

resulting in the discovery of two subtypes of the disease. These groups were found by 

analyzing microarray data from biopsy samples of patients who had not been previously 
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treated. These patients continued to be studied after chemotherapy, and researchers found 

that the two newly discovered disease subtypes had different survival rates, confirming 

the hypothesis that the subtypes had significantly different pathologies (Alizadeh et al., 
2000). 

 

While clustering simply groups the given data based on pair-wise distances, when 

information is known a priori about some or all of the data i.e. labels, a supervised 

approach can be used to obtain a classifier that can predict the label of new instances. 

 

Classification (Supervised Learning) 
The large dimensionality of microarray data means that all classification methods are 

susceptible to over-fitting. Several supervised approaches have been applied to 

microarray data including Artificial Neural Networks (ANNs), Support Vector Machines 

(SVMs), and k-NNs among others (Hastie et al., 2001).  

 

A very challenging and clinically relevant problem is the accurate diagnosis of the 

primary origin of metastatic tumors. Bloom et al. (2004) applied ANNs to the microarray 

data of 21 tumor types with 88% accuracy to predict the primary site of origin of 

metastatic cancers with unknown origin. A classification of 84% was obtained on an 

independent test set with important implications for diagnosing cancer origin and 

directing therapy.  

 

In a comparison of different SVM approaches, multicategory SVMs were reported to 

outperform other popular machine learning algorithms such as k-NNs and ANNs 

(Statnikov et al., 2005) when applied to 11 publicly available microarray datasets related 

to cancer. It is worth noting that feature selection can significantly improve classification 

performance.  

 

Cross-validation 

Cross-validation (CV) is appropriate in microarray studies which are often limited by the 

number of instances (e.g. patient samples). In k-fold CV, the training set is divided into k 

subsets of equal size. In each iteration k-1 subsets are used for training and one subset is 
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used for testing. This process is repeated k times and the mean accuracy is reported. 

Unfortunately, some published studies have applied CV only partially, by applying CV 

on the creation of the prediction rule while excluding feature selection. This introduces a 

bias in the estimated error rates and over-estimates the classification accuracy (Simon et 
al., 2003). As a consequence, results from many studies are controversial due to 

methodological flaws (Dupuy & Simon, 2007). Therefore, models must be evaluated 

carefully to prevent selection bias (Ambroise & McLachlan, 2002). Nested CV is 

recommended, with an inner CV loop to perform the tuning of the parameters and an 

outer CV to compute an estimate of the error (Varma & Simon, 2006).  

 

Several studies which have examined similar biological problems have reported poor 

overlap in gene expression signatures. Brenton et al. (2005) compared two gene lists 

predictive of breast cancer prognosis and found only 3 genes in common. Even though 

the intersection of specific gene lists is poor, the highly correlated nature of microarray 

data means that many gene lists may have similar prediction accuracy (Ein-Dor et al., 
2004). Gene signatures identified from different breast cancer studies with few genes in 

common were shown to have comparable success in predicting patient survival (Buyse et 

al., 2006).  

 

Commonly used supervised learning algorithms yield black box models prompting the 

need for interpretable models providing insights about the underlying biological 

mechanism that produced the data.  

 

Network Analysis 
Bayesian networks (BNs), derived from an alliance between graph theory and probability 

theory, can capture dependencies among many variables (Pearl, 1988, Heckerman, 1996).  

Friedman et al. (2000) introduced a multinomial model framework for BNs to reverse-

engineer networks and showed that this method differs from clustering in that it can 

discover gene interactions other than correlation when applied to yeast gene expression 

data. Spirtes et al. (2002) highlight some of the difficulties of applying this approach to 

microarray data. Nevertheless, many extensions of this research direction have been 

explored. Correlation is not necessarily a good predictor of interactions, and weak 
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interactions are essential to understand disease progression. Identifying the biologically 

meaningful interactions from the spurious ones is challenging, and BNs are particularly 

well-suited for modeling stochastic biological processes.  

 

The exponential growth of data produced by microarray technology as well as other high-

throughput data (e.g. protein-protein interactions) call for novel AI approaches as the 

paradigm shifts from a reductionist to a mechanistic systems view in the life sciences. 

 

 
FUTURE TRENDS 

Uncovering the underlying biological mechanisms that generate these data is harder than 

prediction and has the potential to have far reaching implications for understanding 

disease etiologies. Time series analysis (Bar-Joseph, 2004) is a first step to understanding 

the dynamics of gene regulation, but, eventually, we need to use the technology not only 

to observe gene expression data but also to direct intervention experiments (Pe’er et al., 
2001, Yoo et al., 2002) and develop methods to investigate the fundamental problem of 

distinguishing correlation from causation.  

 

CONCLUSION 
We have reviewed AI methods for pre-processing, clustering, feature selection, 

classification and mechanistic analysis of microarray data. The clusters, gene lists, 

molecular fingerprints and network hypotheses produced by these approaches have 

already shown impact from discovering new disease subtypes and biological markers, 

predicting clinical outcome for directing treatment as well as unraveling gene networks. 

From the AI perspective, this field offers challenging problems and may have a 

tremendous impact on biology and medicine.  
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TERMS AND DEFINITIONS 

Microarray: A microarray is an experimental assay which measures the abundances of 

mRNA (intermediary between DNA and proteins) corresponding to gene expression 

levels in biological samples. 

Curse of Dimensionality: A situation where the number of features (genes) is much 

larger than the number of instances (biological samples) which is known in statistics as p 

>> n problem. 

Feature Selection: A problem of finding a subset (or subsets) of features so as to 

improve the performance of learning algorithms.  

Supervised Learning: A learning algorithm that is given a training set consisting of 

feature vectors associated with class labels and whose goal is to learn a classifier that can 

predict the class labels of future instances. 

Unsupervised Learning: A learning algorithm that tries to identify clusters based on 

similarity between features or between instances or both but without taking into account 

any prior knowledge.  

Multiple testing problem: A problem that occurs when a large number of hypotheses are 

tested simultaneously using a user-defined α cut off p-value which may lead to rejecting a 

non-negligible number of null hypotheses by chance.  

Over-fitting: A situation where a model learns spurious relationships and as a result can 

predict training data labels but not generalize to predict future data. 
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Table 1: Some public online repositories of microarray data 

 

Name of the repository URL 

ArrayExpress at the European 

Bioinformatics Institute 

http://www.ebi.ac.uk/arrayexpress/ 

Gene Expression Omnibus at the National 

Institutes of Health 

http://www.ncbi.nlm.nih.gov/geo/ 

Stanford microarray database http://smd.stanford.edu/ 

Oncomine http://www.oncomine.org/main/index.jsp 

 


