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ABSTRACT 
Mentoring is a new selection policy for statistical learning systems that has 
been initially tested with a Collective Learning Automaton that solves a simple, 
but representative problem. To respond to an immature stimulus that does not 
yet have a high-confidence response associated with it, current selection 
policies usually select their response randomly. Albeit unbiased, this policy 
ignores any confident information already acquired for other well-trained 
stimuli. To exploit this confident information, mentoring hypothesizes that in 
the absence of a sufficiently confident response to a given stimulus, selecting a 
confident response to a different, but nonetheless well-trained stimulus is a 
better strategy than selecting a random response. Mentoring does not require 
distance metrics to find “similar” stimuli (feature vectors) in search of an 
appropriate response. Preliminary results show that mentoring significantly 
accelerates learning and reduces error, especially when several stimuli share the 
same response, i.e., when broad domain generalization is possible. Although 
mentoring does not provide a significant performance improvement when such 
generalization is not possible, neither does it incur significant costs.  

INTRODUCTION 
In Collective Learning Systems (CLS), a Collective Learning Automaton (CLA) 

learns the appropriate response for each stimulus by selecting responses until one of them 
emerges as statistically optimal, guided by feedback from an evaluating Environment 
(Bock 1976). Currently, CLS theory ignores what has already been learned by other 
stimuli when making decisions about a new stimulus. However, once some reliable 
knowledge is available for one situation, it seems reasonable to incorporate it into 
learning the solutions for other situations, even if they are largely unrelated. Many 
psychologists agree that applying successful solutions for old problems to new and often 
unrelated problems is a useful learning strategy (Piaget, 1977 [1933], Pulaski, 1980, 
Berk, 2003). Although the experiments reported in this paper do not attempt to replicate 
human behavior at any level, biologically and psychologically inspired mechanisms and 
methods can often provide useful insights and hints for AI methods (Heckman, 2004). 

The research reported in this paper proposes a new selection policy for CLAs, called 
mentoring, which applies the knowledge about one well-learned situation to other 
situations without comparing their feature vectors to accelerate learning. Although many 
machine learning algorithms can achieve excellent results by identifying similar feature 
vectors (explicit domain generalization), they all require postulating a sensible and 
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Figure 1: Algedonic cycle of a CLS 
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computable distance metric. For example, the k-Nearest Neighbor algorithm (Mitchell, 
1997; Moore & Lee, 1994) computes similarity using the Euclidean distance between 
vectors in an ordered n-dimensional space. On the other hand, although case-based 
reasoning (Sycara et al., 1992) allows feature vectors to be categorical, a distance metric 
of some kind must be postulated to identify similar cases. For many problem domains, 
however, it is simply not possible to postulate a meaningful distance metric. For example, 
in Natural Language Processing there is no direct way to compute the distance between 
the meanings of words so other methods to compute similarity must be devised (Portnoy, 
2005). The mentoring method reported in this paper, however, does not compare feature 
factors at all, and is thus applicable to a wide problem domain. 

BACKGROUND  
To understand mentoring in the context of Collective Learning Systems, a brief 

introduction to this statistical learning paradigm may be helpful. In a Collective Learning 
System (CLS) each agent is a Collective Learning Automaton (CLA) that learns how to 
respond to stimuli appropriately using the algedonic cycle (Beer, 1966), as illustrated in 
Fig. 1. The CLA is embedded in an Environment that sends a stream of stimuli to the 
CLA and periodically issues evaluations of the CLA’s responses to these stimuli. A 
stimulus is a vector of several features that describes some state of the Environment. The 
CLA uses a State Transition Matrix (STM) to store each unique stimuli that has been 
received, along with its occurrence count (sample size) and an estimate of the probability 
that each possible response is valid for this stimulus. For each stimulus that is received, 
the CLA uses these probabilities to select a response, which is then sent to the 
Environment. These selection probabilities are updated based on periodic evaluations 
issued to the CLA by the Environment at the end of a stage, which is a sequence of 
responses by the CLA. 

In current CLS theory, for a given stimulus the Standard CLA selects the response 
with the highest statistical confidence, if the confidence is sufficiently high; otherwise, a 
response is selected at random. All responses are sent to the Environment, and at the end 
of each stage, the Environment evaluates their collective performance. This evaluation is 

issued to the CLA, where the compensation 
function converts the evaluation into an 
update. The update is applied to all the 
elements of the probability vectors in the STM 
that were used to generate the CLA’s responses 
since the last evaluation (the history of the 
stage). (Bock 1993)  

In modern CLS engines Bayes’ Rule and 
the standard difference of two proportions are 
often used to compute the statistical confidence 
of each response for every stimulus, which is 
called the selection confidence of a response.   

 
PROPOSED SOLUTION 

Mentoring is an algorithm that can override the standard selection policy used by a 
Standard CLA with the objective of improving learning performance. A Mentored CLA 
follows the standard selection policy until one stimulus is sufficiently well trained to 
become eligible as a Mentor. A stimulus becomes a Mentor when its selection 

Figure 1: the algedonic cycle of a CLS 
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confidence is very high (98% for these experiments). A Mentor identifies the response 
it would select for its stimulus, and mentored stimuli (Students) simply use this 
response (mentored response), assuming it is better than a random response. However, 
each Student tracks the effectiveness of the Mentor’s response and uses it only as 
long as it remains effective. When a new Mentor becomes available, all stimuli that do 
not yet have an effective Mentor will try out the new Mentor.  

The lifecycle of a hypothetical stimulus in a Mentored CLA is described in Fig. 2.  
When there are no Mentors in a CLA, all stimuli follow the standard selection policy 
and are called standard stimuli. As soon as the first Mentor appears, all standard 
stimuli will investigate it. When a stimulus selects a Mentor, it becomes a Student of 
that Mentor. As long as a Mentor remains effective for a Student, the Student 
will continue to use the Mentor’s responses. However, if a Mentor proves ineffective 
after some time (a parameter), the Student drops this Mentor, ceases to use the 
mentored response, and looks for another Mentor. If no other effective Mentors are 
available, the stimulus reverts to the standard selection policy and becomes a freelance 
stimulus. After a Student has attained a specified selection confidence (90% for these 
experiments), the Student becomes an Independent and reverts to the standard 
selection policy. Dropping the Mentor allows the Independent to explore its 
response range. Exploration is useful because it is possible that there is an even better 
response for the Independent than the mentored response. An Independent will 
either lose confidence in its response and revert to being a Student (or a freelance 
stimulus), or will become confident enough to become a Mentor itself. An 
Independent is allowed some latitude while exploring its own response range, and it 
will only revert to being a Student if its selection confidence falls below a threshold 
(75% for these experiments).  

In the event that a Mentor loses confidence in its response (this is common in the 
early stages of a CLA’s learning), the Mentor resigns and notifies all of its Students. 
All Students using this Mentor remove it from their list of possible Mentors, and 
any new stimuli received by the CLA will not be assigned to the resigned Mentor. A 

  Mentor 
  assignment 

  Independent 
  assignment 

  Independent 
  resignation 

Figure 2: Lifecycle of a hypothetical stimulus S in a Mentored CLA 
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resigned Mentor reverts to being a Student or freelance stimulus and, as such, will 
itself seek a Mentor. Note that the resigned Mentor may become a Mentor again if it 
regains sufficient confidence in a response 

It is important to note that mentoring relies solely on the response selection 
confidence and not on any analysis of the feature vectors of the stimuli or attributes of the 
responses. This avoids some of the thorny problems associated with devising reasonable 
similarity and distance metrics. All mentoring requires are unique identifiers for all 
stimuli and all responses. Mentoring relies on the pigeonhole principle, which says that if 
there are more stimuli than responses, then some stimuli must share the same response.   

Another major advantage of mentoring is that it reduces the interference of the 
dissociative player: the random number generator that must be used to make random 
choices. However, the use of a random number generator is not eliminated entirely. 
Random decisions must still be made in several situations: when there are no Mentors, 
when a stimulus has become Independent, and when there are freelance stimuli. 
However, when there are many Students, fewer random choices are being made, and 
the interference of the dissociative player is minimized. 

EXPERIMENT DESIGN 
For this paper, CLAs were trained and tested on simple function-learning problems. 

The experiments included two cases: Categorical functions and Ordered functions. In the 
Categorical case, no inherent order among the available responses was assumed. This 
case can be thought of as a classification problem with no direct way to order the classes 
(e.g., class 1 = tanks, class 2 = small rocks, class 3 = shopping malls, class 4 = spaniels, 
etc.), and the evaluation issued to the CLA by the Environment had only two values: 
correct or incorrect. In the Ordered case, however, the evaluation issued to the CLA by 
the Environment was the integer distance between the selected responses and the correct 
response, yielding a multi-state evaluation. It is important to consider these two cases 
separately, because they represent two very different, important, and common 
classification problems.  

Figure 3 shows the functions used in these experiments. The first two rows show 
selections from the Categorical functions, and the second two rows show selections from 
the Ordered functions. In the Categorical case, the effect of the distribution of correct 
responses in the range was investigated. Two piece-wise linear functions were tested 
which shared the same number of correct responses, but whose responses were either 
distributed approximately as a sigmoid (Smooth1) or as a straight line (Smooth2). In the 
Smooth1 function, as many stimuli as possible shared the same correct response. In the 
Smooth2 function, the correct responses were distributed evenly among the stimuli.  

In the Ordered case, the effect of two different distributions of the correct responses 
was investigated. In both functions, the correct responses were distributed evenly among 
the stimuli, but the distance between the elements of the sets of the correct responses was 
varied. In the Rough function, correct responses were placed as far apart as possible from 
each other. In the Smooth2 function the distance between responses was minimized.  

Each function had a discrete range and domain of 40 values. All functions varied 
from being one-to-one (f(x) = x) with forty correct responses, to a constant  (f(x) = 20) 
with only one correct response. Each of the 40 possible discrete instantiations of the 
function is called a step, labeled from f(x) = 20 as step 1 to f(x) = x as step 40.  

All experiment trials were run as follows: a Mentored CLA and a Standard CLA 
were each given the same random stimulus, and the response of each was immediately 
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evaluated. This CLS stage (stimulus → response → evaluation) was defined as a contest. 
The CLAs were all trained for 40,000 contests. During training, learning was turned 

off every 400 contests, and the CLAs were tested. During these test samples, the CLAs 
were presented with all 40 
possible stimuli, which were 
repeated 6 times to acquire 
reasonable estimates of the 
averages and standard 
deviations of performance 
during the test sample. 

The matches of 40,000 
contests and their periodic 
test samples were Monte 
Carlo’d 30 times using 30 
different random-number-
generator seeds to facilitate 
formal statistical analysis 
under controlled conditions. 

RESULTS 
The results of these 

experiments are reported in 
three sections: Categorical 
results, Ordered results, and 
a comparison of the performance with the different kinds of functions (Smooth 1, 
Smooth2, and Rough). A few samples from Categorical and Ordered results are presented 
in Fig. 4 and 5. It is important to note that first and last steps of the Categorical and 
Ordered functions are exactly the same (see Fig. 3). Additionally, the Categorical 
functions Smooth1 and Smooth2 are exactly the same from step 20 to 40. 

Categorical Results 
For the Categorical functions, the CLA either selected the correct response or not, so 

performance was measured as the average percentage of correct selections made during 
each test sample. The standard difference of two proportions was used to compute the 
single-tailed confidences that the performance of the Mentored CLAs exceeded the 
performance of the Standard CLAs. Figure 4 shows a selection of these Categorical 
results. Step 1 presented the most difficult learning task for both CLAs, but the Mentored 
CLA’s performance improved very quickly starting around contest 20,000, and the 
difference in performance is statistically significant thereafter. Both CLAs learned step 
40 very quickly and there is almost no significant difference in their performances. At 
step 10, the Mentored CLAs’ performance is significantly better than the Standard CLAs’ 
on both the Smooth1 and the Smooth2 functions. It is interesting to note that performance 
of the Mentored CLAs is almost exactly the same for both functions. 

Figure 3: Steps of the categorical functions (S2 = Smooth2 
in the first row and S1 = Smooth1 in the second row) and 
the ordered functions (R = Rough in the third row and S1 = 
Smooth1 in the last row). Each function transitions from 
f(x) = 20 to f(x) = x in 40 steps. The step number is the 
number of correct  responses. Stimuli lie along the 
horizontal axes; responses lie along the vertical axes. 
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Ordered Results 
To learn Ordered functions, the evaluation issued by the Environment was the 

absolute distance from the CLA’s response to the correct response, i.e., the absolute error. 
For these experiments, an error less than or equal to 2 was considered acceptable. An 
error of zero was rewarded most highly, an error of 1 less highly, and an error of 2 was 
rewarded even less highly. As the error became greater than 2, a CLA was given negative 
evaluations that scaled with the error. For some steps of the Rough and Smooth2 
functions it was possible to receive harsher punishments than in others because there was 
a greater possible error range. For example, if the correct answer was response 1 and the 
CLA chose response 40, then the maximum possible error was 39. On the other hand, if 
the correct response was 20, then the maximum error was only 20.  

In the Ordered case, the performance metric is error, so a lower score means better 
performance. Note that the results for step 1 and step 40 of the Rough and Smooth2 
functions are exactly the same (Fig. 5). For the Ordered results, the standard difference of 
two proportions was used to compute the single-tailed confidence that the difference of 
the two results for each of the test samples in the match was statistically significant. 

Figure 4: Categorical Results.  Performance (left-hand axes) and statistical confidences 
(right-hand axes) that a Mentored CLA yields better performance than a Standard CLA. 
The charts in the center of the figure specify four examples of the functions to be learned 
by the CLAs, with stimuli along the horizontal axes and responses along the vertical axes. 
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Figure 5: Ordered Results. Performance (left-hand axes) and statistical confidences (right-
hand axes) that a Mentored CLA yields better performance (lower error) that a Standard 
CLA. The charts in the center of the figure specify six examples of the functions to be 
learned by the CLAs. Stimuli lie on the horizontal axes and responses on the vertical axes. 
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Figure 5 shows results for selected steps. The results for steps 1 and 40 are very 
similar to those in the Categorical case. In step 1, the Standard CLA makes almost no 
improvement in performance, but at about halfway through the match, the Mentored 
CLA’s performance improves dramatically. By the end of the match, the Mentored CLA 
is performing with in the range of acceptable error. In step 40, there is little difference in 
performance between the two CLAs. Both learn very quickly and both reach near zero 
error by contest 30,000.  

Step 2 shows the biggest disparity between the results of the two functions. In the 
Rough function, the Mentored CLA’s performance is significantly and consistently better 
than the Standard CLA’s after about contest 12,000. In the Smooth2 function, the results 
look very similar to those in step 1. This difference in performance on the two functions 
suggests that the dispersion in the domain has a significant effect on the learning process 
in both Mentored and Standard CLAs.  

Step 10 also shows some of the effect that the dispersion in the domain has on 
learning and mentoring. In the Rough function, both the Mentored and Standard CLA 
learn at approximately the same rate, but the Mentored CLA’s performance is still 
statistically different than that of the Standard CLA. In the Smooth2 function, the 
Standard CLA is still struggling to learn the function. Its error never goes below the 
threshold of 2. Again, the Mentored CLA quickly learns the function and outperforms the 
Standard CLA. 

Comparison of Performance with Different Functions 
In each match, there were 100 test samples where learning was turned off and the 

CLA was tested. The 30 results from the 30 matches were averaged, and the confidence 
that the mentored performance was better than the unmentored performance was used as 
a metric for assessing overall performance. Figures 6 and 7 show all forty steps on the 
horizontal axis and the average confidence on the vertical axis.  

In an attempt to summarize the change in performance over all 40 steps of the 
Categorical and Ordered functions, the confidences that the Mentored CLA outperformed 
the Unmentored CLA were averaged over the test samples in which the most rapid 
changes in performance occurred. In both classes of functions and over most of the steps 
in each function, Mentored and Unmentored CLAs did not make any significant 
improvement in performance before the first 40 test samples were completed, therefore 

these results are not considered in 
Fig. 6 and 7.  

In the Categorical functions, the 
most dramatic change in 
performance occurred between test 
samples 40 and 60. The average 
confidence that the Mentored CLA’s 
performance was better than the 
Unmentored CLA’s performance 
between test samples 40 and 60 is 
shown in Fig. 6. Mentoring holds a 
strong advantage in the first 20 steps 
of both the Smooth1 and Smooth2 
Categorical functions midway 
through training. In the last 20 steps, 
there is no significant advantage to 
mentoring midway through training. 

Figure 6: Categorical functions. The average 
confidence that the Mentored CLA outperformed 
the Unmentored CLA in test samples 40 through 
60 on each step of the categorical functions.  

 

Error bars are ± 1 σ 
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In the Categorical case, the average confidence that the Mentored CLA performed better 
than the Unmentored CLA is 100% for test samples 41 through 100 for steps 1 through 
38. Only in the last two steps of the Categorical functions, where there are only two 
stimuli that share the same response (step 39) or no stimuli that share the same response 
(step 40) is there no significant advantage to mentoring by the end of the match. The 
results for the Smooth1 function in Fig. 6 show a slightly higher variance that can be 
attributed to the fact that when 
more stimuli share the same 
response, the dissociative player 
has greater influence until a 
Mentor is found that is effective 
for the majority of stimuli. From 
these results it is concluded that 
mentoring is reasonably insensitive 
to the dispersion of the responses 
among stimuli. 

In the Ordered functions, 
improvements in performance 
occurred over the second half of 
testing, so Fig. 7 shows to average 
confidence that the Mentored 
CLA’s error was lower than that of 
the Unmentored CLA in test 
samples 50 to 100.  The Ordered 
functions were designed to 
investigate the impact of the dispersion of the responses in the range and, as Fig. 7 shows, 
there is a strong impact as more and more correct responses are introduced. The 
Mentored CLAs perform significantly better than the Unmentored CLAs in step 2 to 18. 
After step 18, the Mentored CLA shows no significant improvement over the 
Unmentored CLA on the Rough function, but the Mentored CLA significantly 
outperforms the Unmentored CLA until step 30.  

The Ordered results need to be put into context in order to be fully understood. In 
the Ordered functions, an error less than or equal to 2 was considered acceptable. In the 
Rough function, both Mentored and Unmentored CLAs were averaging error rates less 
than 2 in the second half of the match by step 6. In contrast, on the Smooth2 function the 
Unmentored CLA did not consistently average error rates less than 2 until step 32. Before 
step 32, there were several functions where the Unmentored CLA never achieved an 
acceptable error rate. On the other hand, the Mentored CLA always achieved an 
acceptable error rate by the end of the match and in most steps this was achieved well 
before the end of the match.  

For the Ordered functions, it is concluded that increased dispersion in the range  
(Rough) makes learning easier for all CLAs and that decreased dispersion (Smooth2) 
makes learning harder for Unmentored CLAs, but not Mentored CLAs.  

 

  
CONCLUSIONS AND FUTURE DIRECTIONS 

This work presented a new response-selection policy for a Collective Learning 
Automata: mentoring. An initial set of formal experiments showed that the new policy is 
an effective strategy for accelerating and improving learning performance for two broad 
classes of learning problems: Categorical and Ordered.  These experiments also showed 
that even when mentoring does not provide a significant improvement in performance, it 

Figure 7: Ordered functions. The average 
confidence that the Mentored CLA outperformed the 
Unmentored CLA in test samples 50 through 100 on 
each step of the categorical functions. 
 
   
  
 

Error bars are ± 1 σ 
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does not significantly hinder performance and incurs no significant costs.   
These conclusions suggest that mentoring is an effective strategy to apply even 

when the exact nature of the problem is not well understood. To pursue this possibility, 
several aspects of the method will be explored in future work, notably: 

• varying the collection length.  
• using a much larger range of stimuli.  
• using multi-valued functions both in the Categorical and Ordered cases.  
• exploring possible explanations for the apparent degradation of performance in 

the Standard CLA. Informal observations suggest that using the Bayesian 
posterior probability may be forcing Standard CLAs into suboptimal solutions 
and that mentoring does not suffer from the same problem.  

• including mentoring in the ALISA classifier (Bock, 1998).  
• investigating the parallels between mentoring and known biological and 

psychological phenomena.  
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