
Interpreting Coverage Information
Using Direct and Indirect Coverage

Chen Huo
University of Delaware

Newark, DE, USA
huoc@udel.edu

James Clause
University of Delaware

Newark, DE, USA
clause@udel.edu

Abstract—Because of the numerous benefits of tests, developers
often wish their applications had more tests. Unfortunately, it
is challenging to determine what new tests to add in order to
improve the quality of the test suite. A number of approaches,
including numerous coverage criteria, have been proposed by the
research community to help developers focus their limited testing
resources. However, coverage criteria often fall short of this goal
because achieving 100% coverage is often infeasible, necessitating
the difficult process of determining if a piece of uncovered code is
actually executable, and the criteria do not take into account how
the code is covered. In this paper, we propose a new approach for
interpreting coverage information, based on the concepts of direct
coverage and indirect coverage, that address these limitations. We
also presents the results of an empirical study of 17 applications
that demonstrate that indirectly covered code is common in real
world software, faults in indirectly covered code are significantly
less likely to be detected than faults located in directly covered
code, and indirectly covered code typically clusters at the method
level. This means that identifying indirectly covered methods can
be effective at helping testers improve the quality of their test
suites by directing them to insufficiently tested code.

I. INTRODUCTION

Testing is one of the primary ways that software developers
assess the quality of their software. Beyond assessing quality,
tests have numerous other benefits such as enabling large scale
changes and serving as a form of documentation. Because of
their benefits, many developers have a strong desire for more
tests in their projects [8]. However, writing additional tests
can be both difficult and costly. According to a recent study
of practicing software developers, a significant portion of this
cost is due to the difficulty of identifying which parts of the
code to test [8].

To help developers identify which code should be tested,
researchers have proposed numerous code coverage metrics
(e.g., [5, 6, 17, 24, 25, 30–32, 36]). In the context of testing,
such coverage metrics indicate which entities (e.g., functions,
statements, branches, etc.) in a program are executed (covered)
by a test suite and which are not. Presumably, uncovered
entities indicate deficiencies in a test suite—if an entity is
not executed, the test suite can not determine whether it is
correct—and identify code that is insufficiently tested.

In practice, several factors limit code coverage’s effective-
ness at helping developers identify where to focus their limited
testing resources. First, it is often difficult or, in the case of
infeasible code, impossible to cover every entity in a program.

As a result, developers must spend significant amounts of time
to determine whether it is possible for an uncovered piece of
code to be executed. Second, code coverage does not consider
how an entity is covered, only whether it is executed by the test
suite. As we demonstrate in Section III, faults located in code
that is directly covered are more likely to be detected than
faults located in code that is indirectly covered. Intuitively,
elements that are directly covered (e.g., methods with depth
1 in a test’s dynamic call graph) are the focus of a test while
elements that are indirectly covered (e.g., methods that are
not directly covered by any test in a test suite) are only
peripherally considered.

In this paper, we propose a new approach, based on the
concepts of direct coverage and indirect coverage, for in-
terpreting coverage information. The goal of the approach
is to help developers focus their limited testing resources
on insufficiently tested code. At a high-level, the approach
identifies methods that contain a high proportion of indirectly
covered entities as being insufficiently tested. In addition
to taking into account how entities are covered by a test
suite, the approach also eliminates the need for testers to
manually identify whether the code indicated by the approach
can be executed. Because they are covered by the test suite,
the methods identified by the approach are guaranteed to be
feasible. This means that developers do not have to spend time
investigating whether it is possible to execute the identified
code.

Our work makes the following contributions:

• The definition of a new approach to interpret coverage
information based on the concepts of direct coverage and
indirect coverage

• An empirical study on the statement coverage of 17
real applications and their test suites that demonstrates:
(1) real test suites indirectly cover large portions of their
corresponding applications, (2) faults located in code that
is indirectly covered are significantly less likely to be
detected than faults that are located in code that is directly
covered, (3) the majority of methods are either completely
directly covered or completely indirectly covered, and
(4) a significant portion of indirectly covered methods are
likely due to testers improperly considering inheritance or
method overloading relations.

The rest of the paper is organized as follows: Section II
describes the details of our approach for interpreting coverage
information including formal definitions of direct coverage and
indirect coverage, an algorithm to compute direct coverage and
indirect coverage, and an example illustrating the approach.
Section III presents our empirical study investigating various
aspects of direct coverage and indirect coverage on 17 real-
world software projects. Section IV discusses several areas of
related work. Finally, Section V draws conclusions from the
empirical study and discusses possible areas of future work.

II. DIRECT AND INDIRECT COVERAGE

This section describes background information necessary
for understanding the remainder of the paper. First, it defines
the concepts of direct coverage and indirect coverage. Second,
it describes how the direct coverage and indirect coverage of
a test suite can be calculated. Third, it explains how insuffi-
ciently tested methods can be identified. Finally, it provides
a concrete example of the concepts in terms of statement
coverage.

A. Definitions

The concepts of direct coverage and indirect coverage are
relatively simple: rather than identifying only whether an entity
is covered by a test suite, direct and indirect coverage identify
how an entity is covered. Formally, the concepts of coverage,
direct coverage, and indirect coverage are defined as follows:

Definition 1. An entity e is covered by a test suite T iff there
exists a test t ∈ T such that e is executed by t.

Definition 2. An entity e is directly covered by a test suite
T iff (1) e is covered by T , and (2) there exists a test t ∈ T
such that m, the method that contains e, is directly invoked
by t (i.e., the depth of m in t’s dynamic call graph is 1).

Definition 3. An entity e is indirectly covered by a test suite
T iff e is (1) covered by T , (2) not directly covered by T , and
(3) contained within a method that is publicly accessible.

B. Calculating Direct Coverage and Indirect Coverage

Algorithm 1 shows the procedure for computing the direct
coverage and indirect coverage of a test suite. As input, the
algorithm requires five pieces of information. The first is
AUT , the application under test. The second is T , the test
suite of the application under test. The third is Coverage, a
mapping that associates each test in the test suite to the set of
entities that are covered when the test is executed. The fourth
is Direct, a mapping that associates each test in the test suite
to the set of methods that are directly invoked by the test
(i.e., the set of methods that have a depth of 1 in the test’s
dynamic call graph). And the fifth is MethodOf , a mapping
that associates each entity in the application under test with
the method that contains the entity. The application under test
and the associated test suite are provided by the tester while
the mappings can be computed using various straightforward
static and dynamic analyses.

Algorithm 1 Compute the direct coverage and indirect cov-
erage for a test suite.

Input: AUT , the application under test.
Input: T , the test suite of the application under test.
Input: Coverage, a mapping that associates each test t ∈ T

to the set of entities covered by t.
Input: Direct, a mapping that associates each test t ∈ T to

the methods that have a depth of 1 in t’s dynamic call
graph.

Input: MethodOf , a mapping that associates each entity e to
the method that contains e.

Output: DC, a mapping that associates each method m ∈
AUT to the set of entities in m that are directly covered.

Output: IC, a mapping that associates each method m ∈
AUT to the set of entities in m that are indirectly covered.

1: function COMPUTEICDC
2: DC ← {}
3: IC ← {}

4: for t ∈ T do

5: E ← Coverage[t]
6: M ← E map {e⇒ MethodOf[e]}
7: (Md,Mi)←M partition {m ∈ Direct[t]}

8: for m ∈Md do
9: Em ← E filter {e⇒ m = MethodOf[e]}

10: DC[m]← DC[m] ∪ Em

11: IC[m]← IC[m] \ Em

12: end for

13: for m ∈Mi do
14: Em ← E filter {e⇒ m = MethodOf[e]}
15: IC[m]← IC[m] ∪ (Em \DC[m])
16: end for

17: end for

18: return DC, IC
19: end function

As output, the algorithm produces two mappings, DC,
which associates each method in the application under test to
the set of entities contained in the method that are directly cov-
ered and, IC, which associates each method in the application
under test to the set of entities contained in the method that
are indirectly covered. Given DC and IC, it is straightforward
to compute the set of entities directly covered or indirectly
covered by the entire test suite.

Given the necessary inputs, the algorithm proceeds as fol-
lows. First the output mappings, DC and IC, are initialized
to empty maps (Lines 2–3). Then the for loop from Line 4
to Line 17 iterates over each test contained in the application
under test’s test suite.

In the body of the loop Line 5 retrieves E, set of entities
covered by the t from the Coverage mapping. Line 6 calculates
M , the set of methods covered by test t, by transforming
the set of entities covered by t to their containing method
using MethodOf . Line 7 partitions M into two sets based
on whether a method is directly invoked by t: Md contains
the methods that are directly invoked while Mi contains the
methods that are indirectly invoked.

The for loop from Line 8 to Line 12 iterates over the
directly covered methods to update the DC and IC mappings.
Line 9 computes Em, the subset of entities covered by t
that are contained in method m, by filtering the set of all
entities covered by t. In practice, instead of filtering the set
of entities for each directly covered method, an additional
mapping Mm→E ⊆ Md × P (E) could be computed for
all methods in M before Lines 8. Line 10 updates the DC
mapping by adding Em to m’s directly covered entities.
Conversely, Line 11 updates the IC mapping by removing
Em from m’s indirectly covered entities. Recall that an entity
is only indirectly covered if it is not directly covered by any
test. As such, the entities contained in Em are not indirectly
covered.

The for loop from Line 13 to Line 16 iterates over the indi-
rectly covered methods to update the DC and IC mappings.
Line 14 again computes Em, the subset of entities covered by
t that are contained in method m, by filtering the set of all
entities covered by t. Line 15 first removes all of the directly
covered entities contained in m from Em. Again, if an entity
is directly covered, it can not be indirectly covered. Second,
the IC mapping is updated by adding the resulting set to the
set of entities indirectly covered in m.

Finally, at Line 18, after each test has been processed, the
two mappings, DC and IC, are returned.

Note that, while the concepts of direct coverage and indirect
coverage are agnostic to the type of entity that is being
covered, in the remainder of the paper we will focus on
statement coverage. We choose to focus on statement coverage
because, due to its simplicity and availability of tool support,
it is the most commonly used coverage metric in practice.

C. Identifying Insufficiently Tested Methods
Given the DC and IC mappings produced by Algorithm 1,

it is possible to identify methods that are insufficiently tested
by computing each method’s direct and indirect coverage
scores:

DirectCoverage(m) =
|DC[m]|

|DC[m]|+ |IC[m]|

IndirectCoverage(m) =
|IC[m]|

|DC[m]|+ |IC[m]|
Analogously to how traditional coverage scores can indicate

insufficiently tested code by identifying areas where large
numbers of entities are uncovered, direct and indirect coverage
scores indicate insufficiently tested methods by identifying
methods that have a small percentage of directly covered
entities or a high percentage of indirectly covered entities.

 1. public class Example {
 2.
 3. public int m1(int a, int b) {
 4. return a + b + m4(a, b);
 5. }
 6.
 7. public int m2(int a, int b) {
 8. return a + (2 / b);
 9. }
10.
11. public int m3(int a) {
12. return m2(a, 2);
13. }
14.
15. public int m4(int a, int b) {
16. return a - b;
17. }
18. }

(a) Application under test.
public class ExampleTest {
 public void test1() {
 Example e = new Example();
 assertEquals(3, e.m1(1, 2));
 }

 public void test2() {
 Example e = new Example();
 assertEquals(3, e.m3(1) + e.m4(1, 2));
 }
}

(b) Corresponding test suite.

Fig. 1: Example code for illustrating direct coverage and
indirect coverage.

D. Prototype implementation

The implementation of our technique consists of three com-
ponents, a coverage profiler,1 a call graph tracer2, and a direct
coverage calculator. The coverage profiler uses the T.J. Watson
Libraries for Analysis (WALA), a static analysis framework
developed by IBM, to find out the tests in applications. It
then executes each tests individually and uses the Jacoco
framework to record the test’s coverage. The output of running
each test is used to define the Coverage mapping explained
in Section II-B. It then builds up the mapping MethodOf
to relate the entities towards the methods with the help of
WALA. Finally, the Direct mapping is built using the JVMTM
Tool Interface (JVMTI) to track the direct invocations from the
tests. Every time a method is invoked, the tracer will check
if the caller is a test or some auxiliary method in the test
suite. If so, the callee is considered directly covered. The
tracer stores the execution traces for direct invocations. Finally,
we implemented the algorithm described in Section II-B to
compute the direct coverage and indirect coverage of the test
suite.

E. An Illustrative Example

As a concrete example of computing direct statement cover-
age and indirect statement coverage, consider Figure 1 which

1Available at: https://bitbucket.org/huoc/icdc
2Available at: https://bitbucket.org/huoc/icdctracer

shows the four methods that constitute an application under
test (Figure 1a) and the application under test’s corresponding
test suite (Figure 1b).

The input mappings, Coverage, Direct, and MethodOf for
this example are shown below:

Coverage =

{
test1 → {s4, s16}
test2 → {s8, s12, s16}

Direct =

{
test1 → {m1}
test2 → {m3,m4}

MethodOf =


s4 → m1
s8 → m2
s12 → m3
s16 → m4

The coverage mapping indicates that test1 covers State-
ments 4 and 16 while test2 covers Statements 8, 12, and 16; the
direct invocation mapping indicates that test1 directly invokes
method m1 while test2 directly invokes methods m3 and m4;
and the containing method mapping indicates that Statement 4
is contained in method m1, Statement 8 is contained in method
m2, Statement 12 is contained in method m3, and Statement
16 is contained in method m4.

The DC and IC mappings computed by Algorithm 1 are
as follows:

DC =


m1 → {s4}
m2 → ∅
m3 → {s12}
m4 → {s16}

IC =


m1 → ∅
m2 → {s8}
m3 → ∅
m4 → ∅

For this example, the mappings show that Statements 4, 12,
and 16 are directly covered by the test suite, while Statement 8
is indirectly covered. Statement 8 is the only indirectly covered
entity because all of the other statements are directly covered
by either test1 or test2. Given this output, the direct coverage
scores of methods m1, m2, and m4, are 100% while the direct
coverage score of method m3 is 0%. Although the test suite
achieves 100% statement coverage, the direct coverage scores
suggest that method m2 may be insufficiently tested.

In this particular case, the fact that Statement 8 is never
directly covered means that the potential division by zero error
it contains can not be detected. Because m2 is only called by
m3, the argument to m2 is always 2. By pointing out that
method m2 has low proportion of directly covered statements,
the approach guides testers to the portions of their applications
that can benefit from additional testing.

TABLE I: Considered applications.

Subject LoC # Tests

Apache XML Security 20,396 52
Barbecue 4,129 172
Commons Beanutils 11,375 973
Commons CLI 1,978 187
Commons CLI2 11,231 470
Commons Collections 26,414 2,563
Commons IO 26,614 882
Commons Language 23,070 2,044
Crammer 20,034 185
Crystal VC 8,031 80
DecentXML 12,741 714
HTML Parser 31,216 764
HttpClient 48,994 894
JDom 16,154 1,257
JFreeChart 92,252 2,234
Joda-Time 86,797 3,962
Numerics4j 3,647 194

III. EMPIRICAL STUDY

We will conduct an empirical study that applies our pro-
posed approach on real world applications. This section de-
scribes the design details of our empirical study, including
the research questions and subject applications. This empirical
study is designated to answer the following research questions:
RQ1—Presence Does indirect coverage exist in real world

applications?
RQ2—Significance Is the possibility of finding a fault influ-

enced by whether the code containing the fault is directly
or indirectly covered?

RQ3—Distribution How are indirectly covered statements dis-
tributed throughout an application?

RQ4—Categorization What are the potential causes for indi-
rectly covered methods?

A. Considered Applications

To investigate our research questions, we selected 17
Java applications with their associated developer-provided test
suites as our research subjects. Table I lists the specific
applications that we chose. The first column, Subject, shows
the names of the selected projects. These projects were taken
from a variety of open source repositories including: (1) the
Software-artifact Infrastructure Repository (SIR),3 which pro-
vides a variety of open-source projects for empirical software
engineering, (2) SourceForge,4 a popular repository for open–
source projects, and (3) Apache Commons,5 a collection of
reusable components. The second column, LoC, shows the
number of source lines of code in the Java files of each subject.
The third column, # Tests, shows the number of tests included
in each application’s test suite.

We choose these specific applications for several reasons.
First, in general, they are popular and widely used. Second,
the applications cover a variety of subject domains. For

3http://sir.unl.edu
4https://sourceforge.net
5http://commons.apache.org

TABLE II: Direct and indirect coverage in percentage.

Subject Coverage % DC % IC

Apache XML Security 42.4 79.4 20.6
Barbecue 84.0 75.3 24.7
Commons Beanutils 74.1 57.9 42.1
Commons CLI 93.1 66.2 33.8
Commons CLI2 95.7 71.3 28.7
Commons Collections 84.7 65.9 34.1
Commons IO 80.0 83.4 16.6
Commons Language 91.8 90.6 9.4
Crammer 59.2 53.7 46.3
Crystal VC 40.9 63.5 36.5
DecentXML 72.8 40.5 59.5
HTML Parser 61.1 50.3 49.7
HttpClient 69.2 77.8 22.2
JDom 71.2 77.1 22.9
JFreeChart 69.0 67.0 33.0
Joda-Time 89.1 84.4 15.6
Numerics4j 94.2 77.0 23.0

example, Commons CLI is a library for processing command-
line options, Commons IO is a library for performing various
input/output operations, Joda-Time is a library for handling
dates and times, etc. Third, the applications vary in size. For
example, JFreeChart has over 90,000 lines of code, while
Commons CLI has approximately 2,000 lines of code. Finally,
the test suites also vary in size. The test suites for some of the
applications contain nearly 4,000 tests while others contain
fewer than 100. Selecting test suites and applications of var-
ious sizes and subject domains improves the generalizability
of our results.

B. Presence

The purpose of our first research question is to determine
how the statements in our subject applications are covered
by the test suites. Because we are proposing to identify
insufficiently tested code based on indirect coverage, it is
important to understand how commonly indirectly covered
code occurs in real applications. To answer this question,
we first computed the overall direct and indirect coverage
scores for each of our subject applications. The results of this
computation are shown in Table II.

In Table II, the first column, Subject, again shows the
names of our experimental subjects. The second column,
Coverage, shows the overall statement coverage achieved by
the application’s test suite. The third and fourth columns, %
DC and % IC, show the application’s direct coverage score and
indirect coverage score, respectively. That is, of the covered
statements, the percentage that are directly covered and the
percentage that are indirectly covered. The data shows that
the percentage of indirect coverage ranges roughly from 10%
to 60%. This suggests that, even for real test suites, the
proportion of indirectly covered code in an application can
be significant.

To gain some additional insights into this data, we checked
whether there is any correlation between an application’s
statement coverage score and the percentage of statements that
are indirectly covered. To compute the correlation, we used

R version 2.14.1’s implementation of the Pearson correlation
coefficient. The computed correlation coefficient is −0.35
which indicates a very weak negative correlation. That means
that, in practice, it is not possible to infer the amounts of
direct or indirect coverage by considering only the traditional
coverage score. It is necessary to compute direct coverage and
indirect coverage scores directly.

C. Significance

The purpose of our second research question is to determine
whether how a statement is covered impacts the effectiveness
of the test suite. More specifically, we are interested in
knowing if faults located in indirectly covered statements are
less likely to be detected by the application’s test suite than
faults located in directly covered statements.

Because it is difficult to identify a suitable number of real
faults with the necessary uniform distribution among directly
and indirectly covered code, we chose to consider injected
faults. More specifically, we considered mutants. Although
mutants are artificial, recent work has shown that they can
be a valid substitute for real faults [3, 19].

To generate the necessary mutants for our subjects, we used
the MAJOR framework.6 While MAJOR is a state of the art
mutation testing framework, it was unable to complete the
mutation testing process for five of our subject applications.

As part of performing mutation testing, MAJOR collects
several pieces of useful information for each mutant it gen-
erates, including: the location of the mutant, in terms of the
containing class and method names and the line number; the
mutation operator used to generate the mutant; and whether
the mutant was detected by the application’s test suite (i.e.,
if the mutant was killed). Because we know the location of
the mutant, we can identify whether each mutant is located in
directly covered code or indirectly covered code.

To determine whether there is a significant difference in
the ability of a test suite to detect a fault depending on
how the fault is covered, we used the binomial test. As an
example of how to compute the test, let Nd be the number of
mutants located in directly covered code, Ni be the number
of mutants located in indirectly covered code, Kd be the
number of mutants located in directly covered code that are
killed by the test suite and Ki be the number of mutants
located in indirectly covered code that are killed by the test
suite. Then the binomial distribution B(Nd,Ki/Ni) is used
to calculate the probability of Kd or more kills in a sample
of size of Nd, given the assumption that the probability of
killing a mutant is Ki/Ni. Informally, our null hypothesis is
that the location of the mutant does not affect the likelihood
that it is killed. We used R version 2.14.1’s implementation of
the test (i.e., binom.test) with the one-sided option (i.e.,
alternative="greater").

Table III shows the twelve subjects for which MAJOR was
able to generate mutants. The first column, subject, shows the
name of each subject. The second and third columns show the

6http://mutation-testing.org

TABLE III: Mutants covered and killed.

Mutants # Killed Mutation Score

Subject IC DC IC DC IC DC % Change p value

Barbecue 81 668 35 362 43.2 54.2 11.0 7.7× 10−9

Commons Beanutils 567 1,130 292 678 51.5 60.0 7.5 5.6× 10−9

Commons CLI 185 453 135 357 73.0 78.8 5.8 2.5× 10−3

Commons CLI2 476 1,110 309 911 64.9 82.1 17.2 2.2× 10−16

Commons Collections 1,150 4,011 712 3,004 61.9 74.9 13.0 2.2× 10−16

Commons IO 519 3,570 394 3,000 75.9 84.0 8.1 2.2× 10−16

Commons Language 1,031 12,575 726 9,496 70.4 75.5 5.1 2.2× 10−16

HTMLParser 2,163 2,443 1,220 1,558 56.4 63.8 7.4 7.3× 10−14

JDom 491 1,059 298 703 60.7 66.4 5.7 7.4× 10−5

Joda Time 693 2,111 465 1,532 67.1 72.6 5.5 3.2× 10−8

JFreeChart 10,001 16,681 2,915 9,171 29.2 55.0 25.8 2.2× 10−16

Numerics4j 65 665 35 484 30.8 72.5 41.7 2.2× 10−16

number of mutants generated by MAJOR that are located in
indirectly covered code (IC) and the number that are located
in directly covered code (DC). The fourth and fifth columns
show the number of mutants, located in either directly covered
code (DC) or indirectly covered code (IC) that were detected
by the application’s test suite. The sixth and seventh columns
show the mutation scores for indirectly covered mutants (IC)
and directly covered mutants (DC), that is the ratio of killed
mutants to total mutants. The eighth column, % Change shows
the percentage change in mutation score when comparing the
mutation score for mutants located in indirectly covered code
to the mutation score for mutants located in directly covered
code. Finally, the last column, p value, shows the p value
computed by the binomial test for each subject.7

As the data shows, for all twelve subjects, there is a statis-
tically significant difference in the likelihood that a mutant
is killed depending on how the mutant is covered by the
test suite. Moreover, the percentage change in mutation score
ranges from 5.5% to 41.7%. This means that not only is
the effect of how a mutant is covered significant, the size
of the effect can be large as well. These results support our
assumption that indirectly covered code is less effectively
tested than directly covered code and should be brought to
the attention of testers.

D. Distribution

The purpose of our third research question is to learn about
the distribution of indirectly covered statements in each of our
applications. By learning how indirectly covered statements
are distributed, we can determine the appropriate level at which
to report insufficiently covered code to developers. If indirectly
covered statements are evenly distributed, then reporting them
individually is the only option. However, if indirectly covered
statements are clustered, reporting indirectly covered code at
a higher granularity can be more useful.

To investigate how indirectly covered statements are dis-
tributed, we computed the indirect coverage scores of each
method in each subject application. The results of this calcula-
tion are shown in Figure 2. This figure shows several plots, one

72.2× 10−16 is the minimum value can be shown by R in the binomial test.

for each subject, and one, (all), for all applications together.
Each individual plot presents a histogram that shows the
distribution of indirectly covered statements in the application.
The y-axis shows the percentage of indirect statement coverage
grouped into three bins: 0% indirect coverage, 1% and 99%
indirect coverage, and 100% indirect coverage. The y-axis
shows the percentage of methods whose indirect coverage
score falls within the corresponding bin. For example, for
apache-xml-security, approximately 20% of its methods are
completely directly covered, approximately 3% of its methods
have indirect coverage scores between 1% and 99%, and
approximately 77% of its methods are completely indirectly
covered.

As the data shows, for all the applications, the distribution of
the methods is primarily binary. In general, methods are either
completely directly covered or completely indirectly covered.
Across all applications, less than 3% of the methods have
indirect coverage scores between 1% and 99%. This suggests
that reporting indirectly covered statements at a method-level
will be effective at helping guide testers to indirectly covered
code.

E. Categorization

The purpose of our fourth research question is to determine
the potential causes of indirectly covered code. Understanding
why indirectly covered code occurs in our applications can
help testers preemptively address why the code is indirectly
covered and improve their test suites.

To determine the causes of the indirectly covered code, we
manually investigated all of the methods in our subjects with at
least some percentage of indirectly covered code. As a result of
this investigation, we classified the methods into three groups:
Overloading, Inheritance, and Other. The Overloading group
contains methods that appear to be indirectly covered due to
overloading among methods in the same class. For example,
if a class contains more than one method with the same name
and return type and at least one of the overloaded methods
is directly covered, we consider the cause of any indirectly
covered overloaded methods to be Overloading. Similarly, the
Inheritance group contains methods that appear to be indirectly
covered due to inheritance among subclasses and super classes.

apache−xml−security barbecue commons−beanutils commons−cli2 commons−cli

commons−collections commons−io commons−lang crammer crystalvc

decentxml htmlparse httpclient jdom jfreechart

joda−time numerics4j violin (all)

0

10

20

0

30

60

90

120

0

100

200

300

400

0

100

200

0

30

60

90

120

0

300

600

900

0

200

400

600

0

500

1000

1500

0

50

100

0

25

50

75

0

50

100

150

200

0

100

200

300

0

200

400

600

0

200

400

600

800

0

1000

2000

3000

0

500

1000

1500

2000

0

100

200

300

0

100

200

300

0

2500

5000

7500

10000

0 1 − 99 100 NA 0 1 − 99 100 NA 0 1 − 99 100 NA 0 1 − 99 100 NA
% Indirect Coverage

M
et

ho
ds

Fig. 2: The distribution of indirectly covered statements of each application.

For example, if super class contains a method that is indirectly
covered, while a subclass’s implementation of the method
is directly covered, we consider the cause of the indirectly
covered method to be Inheritance. Finally, the last group Other
contains methods that are indirectly covered for another reason
(e.g., a tester may simply have forgotten to directly test the
method).

The results of this classification are shown in Tables IV
and V. Table IV shows the results for methods whose per-
centage of indirectly covered statements is between 1% and
99% while Table V shows the results for methods that are
completely indirectly covered. In each table, the first column,
Subject shows the name of each subject. The second column,
Total, shows the number of indirectly covered methods. The
third and fourth columns, Overloading, show the total number
of methods in the Overloading category (# Methods) and
the total number of unique method names (# Unique). For
example, for Commons Beanutils, there are 14 methods in
the Overloading category, but two of them have the same
name as another indirectly covered method. The fifth and
sixth columns, Inheritance show the same information for the
methods in the Inheritance group. Finally, the last column,
Other, shows the number of methods in the Other category.

As the data shows, for methods with partial indirect cover-
age, 53% are caused by either overloading or inheritance and
for methods with 100% indirect coverage, 40% are caused
by either overloading or inheritance. This suggests that both
overloading and inheritance are common causes of indirect

// 0% Indirect coverage
public static FileOutputStream openOutputStream(File
file) throws IOException {
 return openOutputStream(file, false);
}

// 100% Indirect coverage
public static FileOutputStream openOutputStream(File
file, boolean append) throws IOException {
 return new FileOutputStream(file, append);
}

Fig. 3: An example for an overloading group where one
method is completely indirectly covered.

coverage and should be given special attention in the testing
process.

In the remainder of this section, we will provide specific
examples of methods in the overloading and inheritance cat-
egories and explain why they are likely to be insufficiently
tested.

Figure 3 shows an excerpt of an overloading group where
one method is directly covered and another is completely
indirectly covered. The method openOutputStream has
two variants, one that accepts a File and a boolean as input
(openOutputStream(File, boolean)) and one that
accepts only a File as input (openOutputStream(File)).
The single argument variant delegates to the multiple argument
variant by supplying a default boolean parameter. While the
single argument variant is directly covered by the associated

TABLE IV: Methods with partial indirect covereage.

Overloading Inheritance

Subject Total # Methods # Unique # Methods # Unique Other

Apache XML Security 2 0 0 0 0 2
Barbecue 5 1 1 1 1 3
Commons Beanutils 23 14 12 3 3 6
Commons CLI 4 2 2 0 0 2
Commons CLI2 20 5 5 4 4 11
Commons Collections 43 11 9 7 7 25
Commons IO 22 16 15 1 1 5
Commons Language 37 30 26 6 5 1
Crammer 3 2 2 0 0 1
Crystal VC 2 0 0 0 0 2
Decent XML 18 9 9 2 2 7
HTML Parser 9 4 4 0 0 5
HttpClient 25 3 3 4 4 18
JDom 36 14 10 1 1 21
JFreeChart 126 32 30 31 15 63
Joda Time 24 9 8 2 2 13
Numerics4j 4 1 1 0 0 3

Total 403 153 137 62 45 188

TABLE V: Methods with full indirect covereage.

Overloading Inheritance

Subject Total # Methods # Unique # Methods # Unique Other

Apache XML Security 27 0 0 2 1 25
Barbecue 116 12 8 33 11 71
Commons Beanutils 132 80 47 22 14 30
Commons CLI 46 16 10 6 2 24
Commons CLI2 93 27 17 10 8 56
Commons Collections 597 128 79 101 53 368
Commons IO 133 73 47 5 4 55
Commons Language 133 46 20 6 5 81
Crammer 129 24 18 6 2 99
Crystal VC 32 2 1 1 1 29
Decent XML 228 56 47 16 6 156
HTML Parser 313 79 50 54 35 180
HttpClient 252 62 43 21 15 169
JDom 223 79 32 15 10 129
JFreeChart 1,443 347 254 139 80 957
Joda Time 263 93 51 55 28 115
Numerics4j 56 40 39 3 3 13

Total 4,216 1,164 756 495 276 2,557

test suite, the two argument variant is never directly covered.
Its indirect coverage score is 100%. In this case, the tester
cannot access the boolean parameter and any failures that
depend on the parameter being true can not be found by the
test suite.

Figure 4 shows an excerpt of an overloading group where
one method is directly covered and the other is partially
indirectly covered. The method toInt has two variants, one
that accepts a String and an int as parameters and one that
accepts only a String and delegates to the two argument variant
by supplying a default int value. Unlike the previous example,
the application’s test suite does directly cover some of the
statements in the two argument variant by calling it directly in
testToIntStringI. However, because the calls to toInt
in this test never pass in a null value for the String parameter,
the method never returns the provided default value. Again,
any failures related to this code path can not be detected by

the test suite.
Figure 5 shows an excerpt of an inheritance group where

one method is directly covered and the other is completely
indirectly covered. The implementation of widthInBars()
declared in the Module class, a concrete and public class, is
never tested directly by the test suite while the implementation
declared in the CompositeModule subclass is directly
covered.

Figure 6 shows an excerpt of an inheritance group with
partial indirect coverage. The class ParentImpl is the base
of many subclasses whose method canProcess has many
variants. The ParentImpl has not been explicitly con-
structed, however, ParentImpl.canProcess has partial
direct coverage. Unlike Module in the previous example,
there are some subclasses that do not override canProcess.
So when these subclasses get tested in the test suite, part of
the method got directly covered.

// 0% Indirect coverage
public static int toInt(String str) {
 return toInt(str, 0);
}

// 20% Indirect coverage
public static int toInt(String str, int defaultValue) {
 if(str == null) {
 return defaultValue;
 }
 try {
 return Integer.parseInt(str);
 } catch (NumberFormatException nfe) {
 return defaultValue;
 }
}

(a) Application under test.
public void testToIntString() {
 assertTrue(NumberUtils.toInt("12345") == 12345);
 assertTrue(NumberUtils.toInt("abc") == 0);
 assertTrue(NumberUtils.toInt("") == 0);
 assertTrue(NumberUtils.toInt(null) == 0);
}

public void testToIntStringI() {
 assertTrue(NumberUtils.toInt("12345", 5) == 12345);
 assertTrue(NumberUtils.toInt("1234.5", 5) == 5);
}

(b) Corresponding test suite.

Fig. 4: An example for an overloading group where one
method is partially indirectly covered.

We can see from the later two examples for inheritance
groups that it is hard for test programers clearify which
siblings/ancestors/offsprings have not yet been used as the test
inputs because of the various builders and dynamic binding for
the big family of classes.

IV. RELATED WORK

This sections presents existing work that is related to ours
and organized into categories.

A. Defect Prediction

The first group of related work is defect prediction ap-
proaches that attempt to model various software features in or-
der to predict where defects are located before the defects lead
to failures. A wide range of prediction models based on various
features have been proposed including size and complexity
models (e.g., [2]), development quality data models (e.g., [9,
14, 18]), history defect models (e.g., [15, 21]), multilinear
regression models based on multiple metrics (e.g., [20, 28]).
The defect prediction approaches that are most closely related
to our approach are the ones proposed by Miller et al. and
Voas and Miller.

Miller et al. proposed an approach to estimate the proba-
bility of a fault even when testing reveals no failures [26].
The authors provided a probability density function to predict
the true probability of failure. With this function, Voas and
Miller proposed testability which can be measured statically

// Module
// 100% Indirect coverage
public int widthInBars() {
 int sum = 0;
 for (int i = 0; i < bars.length; i++) {
 sum += bars[i];
 }
 return sum;
}

// CompositeModule extends Module
// 0% Indirect coverage
public int widthInBars() {
 int width = 0;
 for (Iterator iterator = modules.iterator();
 iterator.hasNext();) {
 Module module = (Module) iterator.next();
 width += module.widthInBars();
 }
 return width;
}

(a) Application under test.
protected Module getPreAmble() {
 CompositeModule module = new CompositeModule();
 if(drawingQuietSection) {
 module.add(QUIET_SECTION);
 }
 module.add(START[mode]);
 return module;
}

public void testQuietZoneWidthIsAtLeast10BarWidths() {
 assertTrue(barcode.getPreAmble().widthInBars() > 10);
}

(b) Corresponding test suite.

Fig. 5: An example for an inheritance group where one method
is completely indirectly covered.

//class ParentImpl
public boolean canProcess(WriteableCommandLine cl,
 String arg) {
 final Set triggers = getTriggers();

 if (argument != null) {
 char separator = argument.getInitialSeparator();
 // if there is a valid separator character
 if (separator != NUL) {
 final int initialIndex = arg.indexOf(separator);
 // if there is a separator present
 if (initialIndex > 0) {
 return triggers.contains(arg.substring(0,
 initialIndex));
 }
 }
 }
 return triggers.contains(arg);
}

// DefaultOption extends ParentImpl
public boolean canProcess(WriteableCommandLine cl,
 String argument) {
 return (argument != null) &&
 (super.canProcess(cl, argument) ||
 ((argument.length() >= burstLength) &&
 burstAliases.contains(argument.substring(0,
 burstLength))));
}

Fig. 6: An example for an inheritance group where one method
is partially indirectly covered.

even before testing has taken place to predict the presence or
the absence of defects [39]. The authors stated that different
software systems have different sensitivities towards testing
due to their structures that can be modeled by two kinds
of information loss: implicit information loss and explicit
information loss. Implicit information loss occurs when two or
more different inputs to a function produce the same output.
The authors defined the domain/range ratio (DRR), as the ratio
between the cardinality of the domain of the specification and
the cardinality of the range of the specification. For example,
while a function that checks whether a integer is odd can
accept any integer as input, it only has two possible outputs
so its DRR is ∞ : 2. Conversely, a function that negates a
boolean value has a DRR of 2 : 2. The assumption is that
function with higher DRR values are more likely to contain
undetected failures.

B. Coverage Criteria

Also related to our approach are the various coverage
criteria that have been well studied [17, 29, 35, 40]. Late in
the 70’s, Goodenough and Gerhart proposed reliability and
validity to guarantee the correctness of the software [12, 13].
Reliability requires tests to consistently produce the same
outputs. Validity requires tests to reveal errors if there are.
However, neither of the two requirements can be shown
practically applicable [16]. So the research community keeps
searching for new test metrics and also new ways to interpret
coverage metrics.

Schuler and Zeller proposed checked coverage as an ap-
proach for assessing oracle quality [34]. The checked coverage
of a test or test suite is the ratio of executed statements
that compute values that are checked by the test to the total
number of executed statements. A low checked coverage score
suggests that a test is likely to be missing assertions. State
coverage, originally proposed by Koster [22, 23] and extended
by Vanoverberghe et al. [37] is similar to checked coverage.
The primary difference is that state coverage is the ratio of
executed output defining statements, the statements that define
a variable that can be checked by the test suite. Both of the two
approaches try to find missing assertions based on, however,
the inputs that have already been in the original tests. They
both assume that the additional assertions would be placed
on the expected entity to be tested which means they are
only searching locally within the test with existing inputs. In
contrast, our technique is looking for potential new tests (i.e.,
both inputs and assertions) globally in the whole software. In
our terminology, they focus on the direct coverage of the test
suite. Moreover, both of the coverage coverage and the state
coverage involve slicing which is quite expensive.

C. Automatic Test Generation

As our approach can give suggestions for what to test next,
automated test generation approaches can be used to actually
generated the missing test cases. The family contains different
techniques focusing on different facets on automatic test
generation, including (1) generating test inputs effectively and

efficiently, (e.g., [38]), (2) generating test oracles effectively
and efficiently, (e.g., [1]), (3) using mutation to expose the
vulnerability of the system, (e.g., [7, 10]), and (4) generating
tests directed by coverage information, (e.g., [11, 33, 41]).
The techniques that are guided by coverage information may
benefit most from our technique. Although we do not provide
an automatic approach about how to generate new tests,
e.g., what the test inputs and expected values will be, the
information about direct coverage can be used to guide the
generation process.

D. Relative Coverage

Finally, other ways of interpreting coverage information
have been proposed. Relative coverage, proposed by Bartolini
et al. gives another way of interpreting the adequacy crite-
ria [4]. It suggests, that instead of measuring the covered
entities throughout the test suite, it is more appropriate to count
the entities covered for a certain purpose. The target entities
will be specified and the coverage is the ratio of covered
targeted entities among the targeted entities. For example,
the measurement for newly added functionalities in regression
testing [27]. In this case, the targeted entities are the newly
added operations.

V. CONCLUSIONS AND FUTURE WORK

In this paper we presented a new approach for interpreting
coverage information to identify insufficiently tested methods.
The technique is based on partitioning the set of covered
entities into entities that are directly covered and entities
that are indirectly covered. We also presented the results
of an empirical study of 17 applications that demonstrates:
(1) real test suites indirectly cover large portions of their
corresponding applications, (2) faults located in code that is
indirectly covered are significantly less likely to be detected
than faults that are located in code that is directly covered,
(3) the majority of methods are either completely directly
covered or completely indirectly covered, and (4) a significant
portion of indirectly covered methods are likely due to testers
improperly considering inheritance or method overloading
relations. As a result, we believe that identifying indirectly
covered methods can be an effective approach for helping
testers improve the quality of their test suites by directing
them to insufficiently tested code.

In future work, we plan to investigate the insufficiently
tested methods that our tool identified in more detail in order
to expand the categorization of these methods. In addition, we
will implement an automated tool for generating recommenda-
tions for possibly missing test inputs or oracles of the identified
methods. Finally, we will extend our empirical evaluation to
consider additional coverage metrics (e.g., branch coverage).

VI. ACKNOWLEDGMENTS

This work is supported in part by National Science Foun-
dation Grant No. 1527093.

VII. REFERENCES

[1] K. Aggarwal, Y. Singh, A. Kaur, and O. Sangwan. A neural net based
approach to test oracle. ACM SIGSOFT Software Engineering Notes,
29(3):1–6, 2004.

[2] F. Akiyama. An example of software system debugging. In IFIP
Congress (1), volume 71, pages 353–359, 1971.

[3] J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an appropriate
tool for testing experiments? In Proceedings of the 27th international
conference on Software engineering, pages 402–411. ACM, 2005.

[4] C. Bartolini, A. Bertolino, S. Elbaum, and E. Marchetti. Whitening SOA
testing. In Proceedings of the the 7th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium
on The Foundations of Software Engineering, ESEC/FSE ’09, pages
161–170, 2009.

[5] B. Benware, C. Schuermyer, S. Ranganathan, R. Madge, P. Krishna-
murthy, N. Tamarapalli, K.-H. Tsai, and J. Rajski. Impact of multiple-
detect test patterns on product quality. In null, page 1031. IEEE, 2003.

[6] S. Chakravarty, Y. Chang, H. Hoang, S. Jayaraman, S. Picano, C. Prunty,
E. W. Savage, R. Sheikh, E. N. Tran, and K. Wee. Experimental
evaluation of bridge patterns for a high performance microprocessor.
In null, pages 337–342. IEEE, 2005.

[7] C. Csallner and Y. Smaragdakis. Jcrasher: An automatic robustness
tester for Java. Software: Practice and Experience, 34(11):1025–1050,
2004.

[8] E. Daka and G. Fraser. A survey on unit testing practices and
problems. In Proceedings of the 2014 International Symposium on
Software Reliability Engineering, pages 201–211, 2014.

[9] M. Dyer. The cleanroom approach to quality software development.
John Wiley & Sons, Inc., 1992.

[10] G. Fraser and A. Zeller. Mutation-driven generation of unit tests and
oracles. Software Engineering, IEEE Transactions on, 38(2):278–292,
2012.

[11] P. Godefroid, N. Klarlund, and K. Sen. Dart: directed automated random
testing. In ACM Sigplan Notices, volume 40, pages 213–223, 2005.

[12] J. B. Goodenough and S. L. Gerhart. Toward a theory of test data
selection. Software Engineering, IEEE Transactions on, (2):156–173,
1975.

[13] J. B. Goodenough and S. L. Gerhart. Toward a theory of testing: Data
selection criteria. Current trends in programming methodology, 2(2):
44–79, 1977.

[14] A. E. Hassan. Predicting faults using the complexity of code changes.
In Proceedings of the 31st International Conference on Software Engi-
neering, pages 78–88, 2009.

[15] A. E. Hassan and R. C. Holt. The top ten list: Dynamic fault prediction.
In Proceedings of the 21st IEEE International Conference on Software
Maintenance, pages 263–272, 2005.

[16] W. E. Howden. Reliability of the path analysis testing strategy. Software
Engineering, IEEE Transactions on, (3):208–215, 1976.

[17] J. C. Huang. An approach to program testing. ACM Comput. Surv., 7
(3):113–128, Sept. 1975.

[18] C. Jones. The pragmatics of software process improvements. Software
Process Newsletter, 3(5), 1996.

[19] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser.
Are mutants a valid substitute for real faults in software testing? In
Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 654–665, 2014.

[20] T. M. Khoshgoftaar and J. C. Munson. Predicting software development
errors using software complexity metrics. IEEE Journal on Selected
Areas in Communications, 8(2):253–261, 1990.

[21] S. Kim, T. Zimmermann, E. J. Whitehead Jr, and A. Zeller. Predicting
faults from cached history. In Proceedings of the 29th International
Conference on Software Engineering, pages 489–498, 2007.

[22] K. Koster. A state coverage tool for JUnit. In Companion of the
30th International Conference on Software Engineering, pages 965–966,
2008.

[23] K. Koster and D. C. Kao. State coverage: A structural test adequacy
criterion for behavior checking. In Proceedings of the 6th Joint
Meeting of the European Software Engineering Conference and the ACM

SIGSOFT Symposium on The Foundations of Software Engineering,
pages 541–544, 2007.

[24] J. W. Laski and B. Korel. A data flow oriented program testing strategy.
Software Engineering, IEEE Transactions on, (3):347–354, 1983.

[25] E. J. Mccluskey and C.-W. Tseng. Stuck-fault tests vs. actual defects.
In Test Conference, 2000. Proceedings. International, pages 336–342.
IEEE, 2000.

[26] K. W. Miller, L. J. Morell, R. E. Noonan, S. K. Park, D. M. Nicol,
B. W. Murrill, and J. M. Voas. Estimating the probability of failure when
testing reveals no failures. Software Engineering, IEEE Transactions on,
18(1):33–43, 1992.

[27] B. Miranda. A proposal for revisiting coverage testing metrics. In Pro-
ceedings of the 29th ACM/IEEE International Conference on Automated
Software Engineering, ASE ’14, pages 899–902, 2014.

[28] J. C. Munson and T. M. Khoshgoftaar. The detection of fault-prone
programs. IEEE Transactions on Software Engineering, 18(5):423–433,
1992.

[29] J. P. Myers, Jr. Adaptive approaches to structural software testing
(abstract only). In Proceedings of the 15th Annual Conference on
Computer Science, pages 432–, 1987.

[30] S. C. Ntafos. On required element testing. Software Engineering, IEEE
Transactions on, (6):795–803, 1984.

[31] W. Qiu, J. Wang, D. Walker, D. Reddy, X. Lu, Z. Li, W. Shi, and
H. Balachandran. K longest paths per gate (klpg) test generation for
scan-based sequential circuits. In Test Conference, 2004. Proceedings.
ITC 2004. International, pages 223–231. IEEE, 2004.

[32] S. Rapps and E. J. Weyuker. Selecting software test data using data flow
information. Software Engineering, IEEE Transactions on, (4):367–375,
1985.

[33] S. Rayadurgam and M. P. Heimdahl. Coverage based test-case genera-
tion using model checkers. In Engineering of Computer Based Systems,
2001. ECBS 2001. Proceedings. Eighth Annual IEEE International
Conference and Workshop on the, pages 83–91, 2001.

[34] D. Schuler and A. Zeller. Assessing oracle quality with checked
coverage. In Proceedings of the Fourth IEEE International Conference
on Software Testing, Verification and Validation, pages 90–99, 2011.

[35] A. Sen. Concurrency-oriented verification and coverage of system-level
designs. ACM Trans. Des. Autom. Electron. Syst., 16(4):37:1–37:25,
Oct. 2011.

[36] C.-W. Tseng, S. Mitra, S. Davidson, and E. J. McCluskey. An evaluation
of pseudo random testing for detecting real defects. In VLSI Test
Symposium, 19th IEEE Proceedings on. VTS 2001, pages 404–409.
IEEE, 2001.

[37] D. Vanoverberghe, J. de Halleux, N. Tillmann, and F. Piessens. State
coverage: Software validation metrics beyond code coverage. In Pro-
ceedings of the 38th International Conference on Current Trends in
Theory and Practice of Computer Science, pages 542–553, 2012.

[38] W. Visser, C. S. Pâsâreanu, and S. Khurshid. Test input generation with
Java PathFinder. ACM SIGSOFT Software Engineering Notes, 29(4):
97–107, 2004.

[39] J. M. Voas and K. W. Miller. Software testability: The new verification.
IEEE software, (3):17–28, 1995.

[40] E. J. Weyuker, S. N. Weiss, and D. Hamlet. Comparison of program
testing strategies. In Proceedings of the Symposium on Testing, Analysis,
and Verification, pages 1–10, 1991.

[41] N. Williams, B. Marre, P. Mouy, and M. Roger. Pathcrawler: Automatic
generation of path tests by combining static and dynamic analysis. In
Dependable Computing-EDCC 5, pages 281–292. 2005.

